Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 284: 116873, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39151369

RESUMO

Sessile intertidal organisms live in a harsh environment with challenging environmental conditions and increasing anthropogenic pressure such as microplastic (MP) pollution. This study focused on effects of environmentally relevant MP concentrations on the metabolism of intertidal Pacific oyster Crassostrea gigas, and its potential MP-induced vulnerability to warming during midday low tide. Oysters experienced a simulated semidiurnal tidal cycle based on their natural habitat, and were exposed to a mixture of polystyrene microbeads (4, 7.5 and 10 µm) at two environmentally relevant concentrations (0.025 µg L-1 and 25 µg L-1) for 16 days, with tissue samplings after 3 and 12 days to address dose-dependent effects over time. On the last day of exposure, the remaining oysters were additionally exposed to low tide warming (3 °C h-1) to investigate possible MP-induced susceptibility to aerial warming. Metabolites of digestive gland and gill tissues were analysed by using untargeted 1H nuclear magnetic resonance (NMR) based metabolomics. For the digestive gland metabolite profiles were comparable to each other independent of MP concentration, exposure time, or warming. In contrast, gill metabolites were significantly affected by high MP exposure and warming irrespective of MP, initiating the same cellular stress response to counteract induced oxidative stress. The activated cascade of antioxidant defence mechanisms required energy on top of the general energy turnover to keep up homeostasis, which in turn may lead to subtle, and likely sub-lethal, effects within intertidal oyster populations. Present results underline the importance of examining the effects of environmentally relevant MP concentrations not only alone but in combination with other environmental stressors.


Assuntos
Crassostrea , Microplásticos , Poluentes Químicos da Água , Animais , Crassostrea/efeitos dos fármacos , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Ondas de Maré , Monitoramento Ambiental , Metabolômica
2.
Mar Environ Res ; 200: 106661, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39088886

RESUMO

Anthropogenic low-frequency noise (ALFN) is a rising pollutant in the world oceans. Despite the ubiquity of ALFN, its effect on marine invertebrates is still poorly understood. Here, we tested how continuous low-frequency noise (CLFN), a substantial component of ALFN, affects the byssal thread production of Mytilus, a cosmopolitan genus of mussels with high ecological and economic importance. The effects of acute CLFN exposure and predator cues on byssogenesis by Mytilus spp. were explored in both the presence and absence of predator cues. While predator effluents increased thread production, CLFN had seemingly no effect on thread counts. Further, trends suggested a synergistic effect of CLFN and predator cues. The behavioral indifference of Mytilus spp. toward CLFN could contribute to the observed prevalence of these animals in inherently disturbed habitats. This would partly explain their success in colonizing and persisting on artificial substrata rife with disturbances.


Assuntos
Mytilus , Ruído , Animais , Mytilus/fisiologia , Ecossistema , Comportamento Predatório
3.
Sci Total Environ ; 895: 165073, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37355116

RESUMO

Plastic forms, including plastiglomerate, pyroplastic, plasticrusts, anthropoquinas, plastistone and plastitar, were recorded worldwide. These plastic forms derive from geochemical or geophysical interactions such as heat-induced plastic fusion with rock in campfires, incomplete plastic combustion, water motion-driven plastic abrasion in the rocky intertidal zone, plastic deposition in hardened sediments and plastic bonding with tar. Thereby, these interactions can profoundly influence the fate of plastics in the environment. This study characterized three novel plastic forms (plasticoncrete, plastimetal and plastisessiles) discovered on Helgoland island (North Sea). Plasticoncrete consisted of common polyethylene (PE) and polypropylene (PP) fibers hardened in concrete. Plastimetal included PE fibers rusted with metal. Plastisessiles consisted of PE fibers attached to benthic substrates by sessile invertebrates (oysters and polychaetes). Plasticoncrete and plastimetal are the first plastic forms composed of two man-made materials. Plastisessiles show that plastic forms not only result from human- or environment-mediated interactions but also from biological interactions between invertebrates and plastic. All plastic forms (bulk density ≥ 1.4 g/cm3) sunk during floating tests and hardly changed their positions during a 13-day field experiment and 153- to 306-day field monitorings, indicating their local formation, limited mobility and longevity. Still, experimentally detached plastic fibers floated, confirming that the formation of these plastic forms influences the fate of plastic fibers in the environment. Furthermore, the experiment showed that plasticoncrete got deposited in beach sand under wavy and windy conditions, indicating that coastal waves and onshore winds drive plasticoncrete deposition in coastal sediments. We also provide first records of plasticoncrete on Mallorca island (Mediterranean Sea) and plastimetal on Hikoshima island (Sea of Japan), respectively, which show that these plastic forms are no local phenomena. Thereby, our study contributes to the growing fundamental knowledge of plastic forms that is essential to understand the role and fate of these pollutants in coastal habitats worldwide.

4.
PLoS One ; 16(2): e0242208, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33591987

RESUMO

A fossil oyster bed (Ostrea edulis) was recently encountered offshore Helgoland (German Bight). Oysters are important filter feeders in marine environments and their habitat structure supports a large associated biodiversity. The European flat oyster Ostrea edulis has historically occurred in vast populations in the North Sea, but declined massively in the early 20th century. The ecological restoration of Ostrea habitats is a current focal point in the North Sea. To better understand the mechanisms that caused the local collapse of the oyster population, this study investigated the size structure, weight, and age of the shells, along with the spatial dimensions, seafloor properties, and environmental context of the oyster bed. The results show that the demise of the population occurred around 700 CE, ruling out excessive harvest as a driver of decline. Synchronicity of increased geomorphological activity of rivers and concurrent major land use changes in early medieval Europe suggest that increased sedimentation was a viable stressor that reduced the performance of the oysters. The shells provided no indication of a demographically poor state of the oyster bed prior to its demise, but manifested evidence of the wide-spread occurrence of the boring sponge Cliona sp. Our study challenges the assumption of a stable preindustrial state of the European flat oyster in the North Sea, and we conclude that the long-term variability of environmental conditions needs to be addressed to benchmark success criteria for the restoration of O. edulis.


Assuntos
Ecossistema , Fósseis , Ostrea , Exoesqueleto/anatomia & histologia , Animais , Biodiversidade , Espécies em Perigo de Extinção , Fósseis/anatomia & histologia , Mar do Norte , Ostrea/anatomia & histologia , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA