Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4037, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740793

RESUMO

Laser-driven plasma accelerators provide tabletop sources of relativistic electron bunches and femtosecond x-ray pulses, but usually require petawatt-class solid-state-laser pulses of wavelength λL ~ 1 µm. Longer-λL lasers can potentially accelerate higher-quality bunches, since they require less power to drive larger wakes in less dense plasma. Here, we report on a self-injecting plasma accelerator driven by a long-wave-infrared laser: a chirped-pulse-amplified CO2 laser (λL ≈ 10 µm). Through optical scattering experiments, we observed wakes that 4-ps CO2 pulses with < 1/2 terawatt (TW) peak power drove in hydrogen plasma of electron density down to 4 × 1017 cm-3 (1/100 atmospheric density) via a self-modulation (SM) instability. Shorter, more powerful CO2 pulses drove wakes in plasma down to 3 × 1016 cm-3 that captured and accelerated plasma electrons to relativistic energy. Collimated quasi-monoenergetic features in the electron output marked the onset of a transition from SM to bubble-regime acceleration, portending future higher-quality accelerators driven by yet shorter, more powerful pulses.

2.
Philos Trans A Math Phys Eng Sci ; 364(1840): 611-22, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16483952

RESUMO

The staged electron laser acceleration (STELLA) experiment demonstrated staging between two laser-driven devices, high trapping efficiency of microbunches within the accelerating field and narrow energy spread during laser acceleration. These are important for practical laser-driven accelerators. STELLA used inverse free electron lasers, which were chosen primarily for convenience. Nevertheless, the STELLA approach can be applied to other laser acceleration methods, in particular, laser-driven plasma accelerators. STELLA is now conducting experiments on laser wakefield acceleration (LWFA). Two novel LWFA approaches are being investigated. In the first one, called pseudo-resonant LWFA, a laser pulse enters a low-density plasma where nonlinear laser/plasma interactions cause the laser pulse shape to steepen, thereby creating strong wakefields. A witness e-beam pulse probes the wakefields. The second one, called seeded self-modulated LWFA, involves sending a seed e-beam pulse into the plasma to initiate wakefield formation. These wakefields are amplified by a laser pulse following shortly after the seed pulse. A second e-beam pulse (witness) follows the seed pulse to probe the wakefields. These LWFA experiments will also be the first ones driven by a CO(2) laser beam.

3.
Phys Rev Lett ; 92(5): 054801, 2004 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-14995313

RESUMO

Laser-driven electron accelerators (laser linacs) offer the potential for enabling much more economical and compact devices. However, the development of practical and efficient laser linacs requires accelerating a large ensemble of electrons together ("trapping") while keeping their energy spread small. This has never been realized before for any laser acceleration system. We present here the first demonstration of high-trapping efficiency and narrow energy spread via laser acceleration. Trapping efficiencies of up to 80% and energy spreads down to 0.36% (1 sigma) were demonstrated.

4.
Phys Rev Lett ; 91(1): 014802, 2003 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-12906544

RESUMO

We describe our studies of the generation of plasma wake fields by a relativistic electron bunch and of phasing between the longitudinal and transverse fields in the wake. The leading edge of the electron bunch excites a high-amplitude plasma wake inside the overdense plasma column, and the acceleration and focusing wake fields are probed by the bunch tail. By monitoring the dependence of the acceleration upon the plasma's density, we approached the beam-matching condition and achieved an energy gain of 0.6 MeV over the 17 mm plasma length, corresponding to an average acceleration gradient of 35 MeV/m. Wake-induced modulation in energy and angular divergence of the electron bunch are mapped within a wide range of plasma density. We confirm a theoretical prediction about the phase offset between the accelerating and focusing components of plasma wake.

5.
Phys Rev Lett ; 86(18): 4041-3, 2001 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-11328090

RESUMO

Staging of two laser-driven, relativistic electron accelerators has been demonstrated for the first time in a proof-of-principle experiment, whereby two distinct and serial laser accelerators acted on an electron beam in a coherently cumulative manner. Output from a CO2 laser was split into two beams to drive two inverse free electron lasers (IFEL) separated by 2.3 m. The first IFEL served to bunch the electrons into approximately 3 fs microbunches, which were rephased with the laser wave in the second IFEL. This represents a crucial step towards the development of practical laser-driven electron accelerators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA