Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 11(18)2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-36139481

RESUMO

Somatosensation, the detection and transduction of external and internal stimuli such as temperature or mechanical force, is vital to sustaining our bodily integrity. But still, some of the mechanisms of distinct stimuli detection and transduction are not entirely understood, especially when noxious perception turns into chronic pain. Over the past decade major progress has increased our understanding in areas such as mechanotransduction or sensory neuron classification. However, it is in particular the access to human pluripotent stem cells and the possibility of generating and studying human sensory neurons that has enriched the somatosensory research field. Based on our previous work, we describe here the generation of human stem cell-derived nociceptor-like cells. We show that by varying the differentiation strategy, we can produce different nociceptive subpopulations with different responsiveness to nociceptive stimuli such as capsaicin. Functional as well as deep sequencing analysis demonstrated that one protocol in particular allowed the generation of a mechano-nociceptive sensory neuron population, homogeneously expressing TRPV1. Accordingly, we find the cells to homogenously respond to capsaicin, to become sensitized upon inflammatory stimuli, and to respond to temperature stimulation. The efficient and homogenous generation of these neurons make them an ideal translational tool to study mechanisms of sensitization, also in the context of chronic pain.


Assuntos
Capsaicina , Dor Crônica , Capsaicina/farmacologia , Humanos , Mecanotransdução Celular , Células Receptoras Sensoriais/metabolismo , Células-Tronco/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
2.
Neuroscience ; 387: 13-27, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29229553

RESUMO

The somatosensory system allows us to detect a diverse range of physical and chemical stimuli including noxious ones, which can initiate protective reflexes to prevent tissue damage. However, the sensation of pain can - under pathological circumstances - outlive its usefulness and perpetrate ongoing suffering. Rodent model systems have been tremendously useful to help understand basic mechanisms of pain perception. Unfortunately, the translation of this knowledge into novel therapies has been challenging. We have investigated similarities and differences of human and mouse peptidergic (TRKA expressing) nociceptors using dual-color fluorescence in situ hybridization of dorsal root ganglia. By comparing the transcripts of a selected group of well-established nociceptive markers, we observed significant differences for some of them. We found co-expression of Trpv1, a key player for sensitization and inflammatory pain, with TrkA in a larger population in humans compared to mice. Similar results could be obtained for Nav1.8 and Nav1.9, two voltage gated sodium channels implicated in pathological forms of pain. Additionally, co-expression of Ret and TrkA was also found to be more abundant in human neurons. Moreover, the neurofilament heavy polypeptide was detected in all human sensory DRG neurons compared to a more selective expression pattern observed in rodents. To our knowledge, this is the first time that such detailed comparative analysis has been performed and we believe that our findings will direct future experimentation geared to understand the difficulties we face in translating findings from rodent models to humans.


Assuntos
Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Nociceptores/metabolismo , Idoso , Animais , Feminino , Humanos , Hibridização In Situ , Masculino , Camundongos , Pessoa de Meia-Idade , Canal de Sódio Disparado por Voltagem NAV1.8/biossíntese , Canal de Sódio Disparado por Voltagem NAV1.9/biossíntese , Proteínas de Neurofilamentos/biossíntese , Dor/metabolismo , Proteínas Proto-Oncogênicas c-ret/biossíntese , Receptor trkA/biossíntese , Especificidade da Espécie , Canais de Cátion TRPV/biossíntese
3.
Sci Rep ; 7(1): 17040, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29213058

RESUMO

Mechanisms underlying information storage have been depicted for global cell-wide and pathway-specific synaptic plasticity. Yet, little is known how these forms of plasticity interact to enhance synaptic competition and network stability. We examined synaptic interactions between apical and basal dendrites of CA1 pyramidal neurons in mouse hippocampal slices. Bursts (50 Hz) of three action potentials (AP-bursts) paired with preceding presynaptic stimulation in stratum radiatum specifically led to LTP of the paired pathway in adult mice (P75). At adolescence (P28), an increase in burst frequency (>50 Hz) was required to gain timing-dependent LTP. Surprisingly, paired radiatum and unpaired oriens pathway potentiated, unless the pre-post delay was shortened from 10 to 5 ms, which selectively potentiated paired radiatum pathway, since unpaired oriens pathway decreased back to baseline. Conversely, the exact same 5 ms pairing in stratum oriens potentiated both pathways, as did AP-bursts alone, which potentiated synaptic efficacy as well as current-evoked postsynaptic spiking. L-type voltage-gated Ca2+ channels were involved in mediating synaptic potentiation in oriens, whereas NMDA and adenosine receptors counteracted unpaired stratum oriens potentiation following pairing in stratum radiatum. This asymmetric plasticity uncovers important insights into alterations of synaptic efficacy and intrinsic neuronal excitability for pathways that convey hippocampal and extra-hippocampal information.


Assuntos
Região CA1 Hipocampal/metabolismo , Potenciação de Longa Duração , Potenciais de Ação , Animais , Região CA1 Hipocampal/citologia , Canais de Cálcio Tipo L/metabolismo , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores , Técnicas In Vitro , Camundongos , Receptores de GABA-B/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Purinérgicos P1/metabolismo , Sinapses/fisiologia
4.
EMBO J ; 36(18): 2770-2789, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28790178

RESUMO

Canonical transient receptor potential (TRPC) channels influence various neuronal functions. Using quantitative high-resolution mass spectrometry, we demonstrate that TRPC1, TRPC4, and TRPC5 assemble into heteromultimers with each other, but not with other TRP family members in the mouse brain and hippocampus. In hippocampal neurons from Trpc1/Trpc4/Trpc5-triple-knockout (Trpc1/4/5-/-) mice, lacking any TRPC1-, TRPC4-, or TRPC5-containing channels, action potential-triggered excitatory postsynaptic currents (EPSCs) were significantly reduced, whereas frequency, amplitude, and kinetics of quantal miniature EPSC signaling remained unchanged. Likewise, evoked postsynaptic responses in hippocampal slice recordings and transient potentiation after tetanic stimulation were decreased. In vivo, Trpc1/4/5-/- mice displayed impaired cross-frequency coupling in hippocampal networks and deficits in spatial working memory, while spatial reference memory was unaltered. Trpc1/4/5-/- animals also exhibited deficiencies in adapting to a new challenge in a relearning task. Our results indicate the contribution of heteromultimeric channels from TRPC1, TRPC4, and TRPC5 subunits to the regulation of mechanisms underlying spatial working memory and flexible relearning by facilitating proper synaptic transmission in hippocampal neurons.


Assuntos
Hipocampo/fisiologia , Memória de Curto Prazo , Multimerização Proteica , Transmissão Sináptica , Canais de Cátion TRPC/metabolismo , Animais , Técnicas de Inativação de Genes , Hipocampo/metabolismo , Espectrometria de Massas , Camundongos , Camundongos Knockout , Canais de Cátion TRPC/genética
5.
Science ; 353(6306): 1393-1398, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27562954

RESUMO

Body temperature homeostasis is critical for survival and requires precise regulation by the nervous system. The hypothalamus serves as the principal thermostat that detects and regulates internal temperature. We demonstrate that the ion channel TRPM2 [of the transient receptor potential (TRP) channel family] is a temperature sensor in a subpopulation of hypothalamic neurons. TRPM2 limits the fever response and may detect increased temperatures to prevent overheating. Furthermore, chemogenetic activation and inhibition of hypothalamic TRPM2-expressing neurons in vivo decreased and increased body temperature, respectively. Such manipulation may allow analysis of the beneficial effects of altered body temperature on diverse disease states. Identification of a functional role for TRP channels in monitoring internal body temperature should promote further analysis of molecular mechanisms governing thermoregulation and foster the genetic dissection of hypothalamic circuits involved with temperature homeostasis.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Febre/fisiopatologia , Temperatura Alta , Hipotermia/fisiopatologia , Área Pré-Óptica/fisiologia , Canais de Cátion TRPM/fisiologia , Animais , Regulação da Temperatura Corporal/genética , Feminino , Febre/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Neurônios/fisiologia , Área Pré-Óptica/citologia , Canais de Cátion TRPM/genética
6.
J Biol Chem ; 291(17): 9105-18, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-26884337

RESUMO

The maturation of glutamatergic synapses in the CNS is regulated by NMDA receptors (NMDARs) that gradually change from a GluN2B- to a GluN2A-dominated subunit composition during postnatal development. Here we show that NMDARs control the activity of the small GTPase ADP-ribosylation factor 6 (Arf6) by consecutively recruiting two related brefeldin A-resistant Arf guanine nucleotide exchange factors, BRAG1 and BRAG2, in a GluN2 subunit-dependent manner. In young cortical cultures, GluN2B and BRAG1 tonically activated Arf6. In mature cultures, Arf6 was activated through GluN2A and BRAG2 upon NMDA treatment, whereas the tonic Arf6 activation was not detectable any longer. This shift in Arf6 regulation and the associated drop in Arf6 activity were reversed by a knockdown of BRAG2. Given their sequential recruitment during development, we examined whether BRAG1 and BRAG2 influence synaptic currents in hippocampal CA1 pyramidal neurons using patch clamp recordings in acute slices from mice at different ages. The number of AMPA receptor (AMPAR) miniature events was reduced by depletion of BRAG1 but not by depletion of BRAG2 during the first 2 weeks after birth. In contrast, depletion of BRAG2 during postnatal weeks 4 and 5 reduced the number of AMPAR miniature events and compromised the quantal sizes of both AMPAR and NMDAR currents evoked at Schaffer collateral synapses. We conclude that both Arf6 activation through GluN2B-BRAG1 during early development and the transition from BRAG1- to BRAG2-dependent Arf6 signaling induced by the GluN2 subunit switch are critical for the development of mature glutamatergic synapses.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Brefeldina A/farmacologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sinapses/metabolismo , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/genética , Animais , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Ratos , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Transdução de Sinais/fisiologia , Sinapses/genética
7.
J Physiol ; 592(22): 4931-49, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25239458

RESUMO

Although Ca(2+) is critically important in activity-dependent neuronal development, not much is known about the regulation of dendritic Ca(2+) signals in developing neurons. Here, we used ratiometric Ca(2+) imaging to investigate dendritic Ca(2+) signalling in rat hippocampal pyramidal cells during the first 1-4 weeks of postnatal development. We show that active dendritic backpropagation of Nav channel-dependent action potentials (APs) evoked already large dendritic Ca(2+) transients in animals aged 1 week with amplitudes of ∼150 nm, similar to the amplitudes of ∼160 nM seen in animals aged 4 weeks. Although the AP-evoked dendritic Ca(2+) load increased about four times during the first 4 weeks, the peak amplitude of free Ca(2+) concentration was balanced by a four-fold increase in Ca(2+) buffer capacity κs (∼70 vs. ∼280). Furthermore, Ca(2+) extrusion rates increased with postnatal development, leading to a slower decay time course (∼0.2 s vs. ∼0.1 s) and more effective temporal summation of Ca(2+) signals in young cells. Most importantly, during prolonged theta-burst stimulation dendritic Ca(2+) signals were up to three times larger in cells at 1 week than at 4 weeks of age and much larger than predicted by linear summation, which is attributable to an activity-dependent slow-down of Ca(2+) extrusion. As Ca(2+) influx is four-fold smaller in young cells, the larger Ca(2+) signals are generated using four times less ATP consumption. Taken together, the data suggest that active backpropagations regulate dendritic Ca(2+) signals during early postnatal development. Remarkably, during prolonged AP firing, Ca(2+) signals are several times larger in young than in mature cells as a result of activity-dependent regulation of Ca(2+) extrusion rates.


Assuntos
Região CA1 Hipocampal/fisiologia , Sinalização do Cálcio , Dendritos/metabolismo , Células Piramidais/metabolismo , Potenciais de Ação , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/crescimento & desenvolvimento , Dendritos/fisiologia , Células Piramidais/fisiologia , Ratos , Ratos Wistar , Ritmo Teta
8.
PLoS One ; 6(3): e17575, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21455301

RESUMO

NG2 cells, the fourth type of glia in the mammalian CNS, receive synaptic input from neurons. The function of this innervation is unknown yet. Postsynaptic changes in intracellular Ca(2+)-concentration ([Ca(2+)](i)) might be a possible consequence. We employed transgenic mice with fluorescently labeled NG2 cells to address this issue. To identify Ca(2+)-signaling pathways we combined patch-clamp recordings, Ca(2+)-imaging, mRNA-transcript analysis and focal pressure-application of various substances to identified NG2-cells in acute hippocampal slices. We show that activation of voltage-gated Ca(2+)-channels, Ca(2+)-permeable AMPA-receptors, and group I metabotropic glutamate-receptors provoke [Ca(2+)](i)-elevations in NG2 cells. The Ca(2+)-influx is amplified by Ca(2+)-induced Ca(2+)-release. Minimal electrical stimulation of presynaptic neurons caused postsynaptic currents but no somatic [Ca(2+)](i) elevations, suggesting that [Ca(2+)](i) elevations in NG2 cells might be restricted to their processes. Local Ca(2+)-signaling might provoke transmitter release or changes in cell motility. To identify structural prerequisites for such a scenario, we used electron microscopy, immunostaining, mRNA-transcript analysis, and time lapse imaging. We found that NG2 cells form symmetric and asymmetric synapses with presynaptic neurons and show immunoreactivity for vesicular glutamate transporter 1. The processes are actin-based, contain ezrin but not glial filaments, microtubules or endoplasmic reticulum. Furthermore, we demonstrate that NG2 cell processes in situ are highly motile. Our findings demonstrate that gray matter NG2 cells are endowed with the cellular machinery for two-way communication with neighboring cells.


Assuntos
Cálcio/metabolismo , Neuroglia/metabolismo , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Eletrofisiologia , Humanos , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , Microscopia de Fluorescência , Neuroglia/ultraestrutura , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA