Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
J Gen Virol ; 105(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38695722

RESUMO

High-pathogenicity avian influenza viruses (HPAIVs) of the goose/Guangdong lineage are enzootically circulating in wild bird populations worldwide. This increases the risk of entry into poultry production and spill-over to mammalian species, including humans. Better understanding of the ecological and epizootiological networks of these viruses is essential to optimize mitigation measures. Based on full genome sequences of 26 HPAIV samples from Iceland, which were collected between spring and autumn 2022, as well as 1 sample from the 2023 summer period, we show that 3 different genotypes of HPAIV H5N1 clade 2.3.4.4b were circulating within the wild bird population in Iceland in 2022. Furthermore, in 2023 we observed a novel introduction of HPAIV H5N5 of the same clade to Iceland. The data support the role of Iceland as an utmost northwestern distribution area in Europe that might act also as a potential bridging point for intercontinental spread of HPAIV across the North Atlantic.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Filogenia , Islândia/epidemiologia , Animais , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Influenza Aviária/transmissão , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Genótipo , Animais Selvagens/virologia , Vírus da Influenza A/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Genoma Viral , Aves/virologia
2.
Virus Evol ; 10(1): veae027, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699215

RESUMO

Since 2016, A(H5Nx) high pathogenic avian influenza (HPAI) virus of clade 2.3.4.4b has become one of the most serious global threats not only to wild and domestic birds, but also to public health. In recent years, important changes in the ecology, epidemiology, and evolution of this virus have been reported, with an unprecedented global diffusion and variety of affected birds and mammalian species. After the two consecutive and devastating epidemic waves in Europe in 2020-2021 and 2021-2022, with the second one recognized as one of the largest epidemics recorded so far, this clade has begun to circulate endemically in European wild bird populations. This study used the complete genomes of 1,956 European HPAI A(H5Nx) viruses to investigate the virus evolution during this varying epidemiological outline. We investigated the spatiotemporal patterns of A(H5Nx) virus diffusion to/from and within Europe during the 2020-2021 and 2021-2022 epidemic waves, providing evidence of ongoing changes in transmission dynamics and disease epidemiology. We demonstrated the high genetic diversity of the circulating viruses, which have undergone frequent reassortment events, providing for the first time a complete overview and a proposed nomenclature of the multiple genotypes circulating in Europe in 2020-2022. We described the emergence of a new genotype with gull adapted genes, which offered the virus the opportunity to occupy new ecological niches, driving the disease endemicity in the European wild bird population. The high propensity of the virus for reassortment, its jumps to a progressively wider number of host species, including mammals, and the rapid acquisition of adaptive mutations make the trend of virus evolution and spread difficult to predict in this unfailing evolving scenario.

3.
PLoS Pathog ; 20(1): e1011880, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38271294

RESUMO

BACKGROUND: West Nile virus (WNV) outbreaks in birds, humans, and livestock have occurred in multiple areas in Europe and have had a significant impact on animal and human health. The patterns of emergence and spread of WNV in Europe are very different from those in the US and understanding these are important for guiding preparedness activities. METHODS: We mapped the evolution and spread history of WNV in Europe by incorporating viral genome sequences and epidemiological data into phylodynamic models. Spatially explicit phylogeographic models were developed to explore the possible contribution of different drivers to viral dispersal direction and velocity. A "skygrid-GLM" approach was used to identify how changes in environments would predict viral genetic diversity variations over time. FINDINGS: Among the six lineages found in Europe, WNV-2a (a sub-lineage of WNV-2) has been predominant (accounting for 73% of all sequences obtained in Europe that have been shared in the public domain) and has spread to at least 14 countries. In the past two decades, WNV-2a has evolved into two major co-circulating clusters, both originating from Central Europe, but with distinct dynamic history and transmission patterns. WNV-2a spreads at a high dispersal velocity (88km/yr-215 km/yr) which is correlated to bird movements. Notably, amongst multiple drivers that could affect the spread of WNV, factors related to land use were found to strongly influence the spread of WNV. Specifically, the intensity of agricultural activities (defined by factors related to crops and livestock production, such as coverage of cropland, pasture, cultivated and managed vegetation, livestock density) were positively associated with both spread direction and velocity. In addition, WNV spread direction was associated with high coverage of wetlands and migratory bird flyways. CONCLUSION: Our results suggest that-in addition to ecological conditions favouring bird- and mosquito- presence-agricultural land use may be a significant driver of WNV emergence and spread. Our study also identified significant gaps in data and the need to strengthen virological surveillance in countries of Central Europe from where WNV outbreaks are likely seeded. Enhanced monitoring for early detection of further dispersal could be targeted to areas with high agricultural activities and habitats of migratory birds.


Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Vírus do Nilo Ocidental/genética , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária , Filogeografia , Europa (Continente)/epidemiologia , Surtos de Doenças
4.
J Virol ; 97(10): e0107623, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37811996

RESUMO

IMPORTANCE: The influenza A virus genome consists of eight distinct viral RNAs (vRNAs) that are typically packaged into a single virion as an octameric complex. How this genome complex is assembled and incorporated into the virion is poorly understood, but previous research suggests a coordinative role for packaging signals present in all vRNAs. Here, we show that disruption of two packaging signals in a model H7N7 influenza A virus results in a mixture of virions with unusual vRNA content, including empty virions, virions with one to four vRNAs, and virions with octameric complexes composed of vRNA duplicates. Our results suggest that (i) the assembly of error-free octameric complexes proceeds through a series of defined vRNA sub-complexes and (ii) virions can bud without incorporating complete octameric complexes.


Assuntos
Vírus da Influenza A Subtipo H7N7 , Vírus da Influenza A , Empacotamento do Genoma Viral , Montagem de Vírus , Genoma Viral , Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H7N7/genética , RNA Viral/genética , Vírion/genética
5.
Emerg Microbes Infect ; 12(2): e2257810, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37682060

RESUMO

ABSTRACTRecent reports documenting sporadic infections in carnivorous mammals worldwide with highly pathogenic avian influenza virus (HPAIV) H5N1 clade 2.3.4.4b have raised concerns about the potential risk of adaptation to sustained transmission in mammals, including humans. We report H5N1 clade 2.3.4.4b infection of two grey seals (Halichoerus grypus) from coastal waters of The Netherlands and Germany in December 2022 and February 2023, respectively. Histological and immunohistochemical investigations showed in both animals a non-suppurative and necrotising encephalitis with viral antigen restricted to the neuroparenchyma. Whole genome sequencing showed the presence of HPAIV H5N1 clade 2.3.4.4b strains in brain tissue, which were closely related to sympatric avian influenza viruses. Viral RNA was also detected in the lung of the seal from Germany by real-time quantitative PCR. No other organs tested positive. The mammalian adaptation PB2-E627K mutation was identified in approximately 40% of the virus population present in the brain tissue of the German seal. Retrospective screening for nucleoprotein-specific antibodies, of sera collected from 251 seals sampled in this region from 2020 to 2023, did not show evidence of influenza A virus-specific antibodies. Similarly, screening by reverse transcription PCR of tissues of 101 seals that had died along the Dutch coast in the period 2020-2021, did not show evidence of influenza virus infection. Collectively, these results indicate that individual seals are sporadically infected with HPAIV-H5N1 clade 2.3.4.4b, resulting in an encephalitis in the absence of a systemic infection, and with no evidence thus far of onward spread between seals.


Assuntos
Encefalite , Virus da Influenza A Subtipo H5N1 , Infecções por Orthomyxoviridae , Focas Verdadeiras , Animais , Virus da Influenza A Subtipo H5N1/genética , Estudos Retrospectivos
6.
Euro Surveill ; 28(31)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37535471

RESUMO

In June 2023, a fatal disease outbreak in cats occurred in Poland. Most cases tested in Poland (29 of 47) were positive for highly pathogenic avian influenza (HPAI) A (H5N1) virus. Genetic analyses revealed clade 2.3.4.4b with point mutations indicative of initial mammalian hosts adaptations. Cat viral sequences were highly similar (n = 21), suggesting a potential common infection source. To investigate possible infection routes, our group tested food samples from affected households. HPAI H5N1 virus was detected in one poultry meat sample.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Animais , Gatos , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/epidemiologia , Polônia/epidemiologia , Aves , Filogenia , Mamíferos
7.
Emerg Microbes Infect ; 12(2): 2245916, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37585712

RESUMO

ABSTRACTGlobal and even national genome surveillance approaches do not provide the resolution necessary for rapid and accurate direct response by local public health authorities. Hence, a regional network of microbiological laboratories in collaboration with the health departments of all districts of the German federal state of Mecklenburg-Western Pomerania (M-V) was formed to investigate the regional molecular epidemiology of circulating SARS-CoV-2 lineages between 11/2020 and 03/2022. More than 4750 samples from all M-V counties were sequenced using Illumina and Nanopore technologies. Overall, 3493 (73.5%) sequences fulfilled quality criteria for time-resolved and/or spatially-resolved maximum likelihood phylogenic analyses and k-mean/ median clustering (KMC). We identified 116 different Pangolin virus lineages that can be assigned to 16 Nextstrain clades. The ten most frequently detected virus lineages belonged to B.1.1.7, AY.122, AY.43, BA.1, B.1.617.2, BA.1.1, AY.9.2, AY.4, P.1 and AY.126. Time-resolved phylogenetic analyses showed the occurrence of virus clades as determined worldwide, but with a substantial delay of one to two months. Further spatio-temporal phylogenetic analyses revealed a regional outbreak of a Gamma variant limited to western M-V counties. Finally, KMC elucidated a successive introduction of the various virus lineages into M-V, possibly triggered by vacation periods with increased (inter-) national travel activities. The COVID-19 pandemic in M-V was shaped by a combination of several SARS-CoV-2 introductions, lockdown measures, restrictive quarantine of patients and the lineage specific replication rate. Complementing global and national surveillance, regional surveillance adds value by providing a higher level of surveillance resolution tailored to local health authorities.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , Filogenia , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Genômica
8.
Emerg Microbes Infect ; 12(2): 2239938, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37470510

RESUMO

Respiratory disease is a significant economic issue in pig farming, with a complex aetiology that includes swine influenza A viruses (swIAV), which are common in European domestic pig populations. The most recent human influenza pandemic in 2009 showed swIAV's zoonotic potential. Monitoring pathogens and disease control are critical from a preventive standpoint, and are based on quick, sensitive, and specific diagnostic assays capable of detecting and distinguishing currently circulating swIAV in clinical samples. For passive surveillance, a set of multiplex quantitative reverse transcription real-time PCRs (mRT-qPCR) and MinION-directed sequencing was updated and deployed. Several lineages and genotypes of swIAV were shown to be dynamically developing, including novel reassortants between human pandemic H1N1 and the avian-derived H1 lineage of swIAV. Despite this, nearly 70% (842/1216) of individual samples from pigs with respiratory symptoms were swIAV-negative, hinting to different aetiologies. The complex and synergistic interactions of swIAV infections with other viral and bacterial infectious agents contribute to the aggravation of pig respiratory diseases. Using a newly developed mRT-qPCR for the combined detection of swIAV and the recently described porcine respirovirus 1 (PRV1) and swine orthopneumovirus (SOV) widespread co-circulation of PRV1 (19.6%, 238/1216 samples) and SOV (14.2%, 173/1216 samples) was evident. Because of the high incidence of PRV1 and SOV infections in pigs with respiratory disease, these viruses may emerge as new allies in the porcine respiratory disease syndrome.


Assuntos
Infecções por Orthomyxoviridae , Infecções por Pneumovirus , Doenças Respiratórias , Infecções por Respirovirus , Doenças dos Suínos , Alemanha/epidemiologia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Vírus da Influenza A/genética , Respirovirus/genética , Infecções por Respirovirus/epidemiologia , Infecções por Respirovirus/veterinária , Doenças Respiratórias/veterinária , Doenças Respiratórias/virologia , Infecções por Pneumovirus/epidemiologia , Infecções por Pneumovirus/veterinária , Pneumovirus/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Reação em Cadeia da Polimerase em Tempo Real , Filogenia
9.
Emerg Microbes Infect ; 12(2): 2231561, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37381816

RESUMO

Three avian viral pathogens circulate in Germany with particular importance for animal disease surveillance due to their zoonotic potential, their impact on wild bird populations and/or poultry farms: Highly pathogenic (HP) avian influenza virus (AIV) of subtype H5 (HPAIV H5), Usutu virus (USUV), and West Nile virus (WNV). Whereas HPAIV H5 has been mainly related to epizootic outbreaks in winter, the arthropod-borne viruses USUV and WNV have been detected more frequently during summer months corresponding to peak mosquito activity. Since 2021, tendencies of a potentially year-round, i.e. enzootic, status of HPAIV in Germany have raised concerns that Orthomyxoviruses (AIV) and Flaviviruses (USUV, WNV) may not only circulate in the same region, but also at the same time and in the same avian host range. In search of a host species group suitable for a combined surveillance approach for all mentioned pathogens, we retrospectively screened and summarized case reports, mainly provided by the respective German National Reference Laboratories (NRLs) from 2006 to 2021. Our dataset revealed an overlap of reported infections among nine avian genera. We identified raptors as a particularly affected host group, as the genera Accipiter, Bubo, Buteo, Falco, and Strix represented five of the nine genera, and highlighted their role in passive surveillance. This study may provide a basis for broader, pan-European studies that could deepen our understanding of reservoir and vector species, as HPAIV, USUV, and WNV are expected to further become established and/or spread in Europe in the future and thus improved surveillance measures are of high importance.


Assuntos
Flavivirus , Influenza Aviária , Orthomyxoviridae , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Estudos Retrospectivos , Mosquitos Vetores , Flavivirus/genética , Aves , Influenza Aviária/epidemiologia
10.
Emerg Infect Dis ; 29(7): 1492-1495, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37347930

RESUMO

We found that nasal and alimentary experimental exposure of pigs to highly pathogenic avian influenza virus H5N1 clade 2.3.4.4b was associated with marginal viral replication, without inducing any clinical manifestation or pathological changes. Only 1 of 8 pigs seroconverted, pointing to high resistance of pigs to clade 2.3.4.4b infection.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Animais , Suínos , Replicação Viral
11.
J Gen Virol ; 104(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37014781

RESUMO

Mass mortality was observed among colony-breeding seabirds in the German Wadden Sea area of the North Sea during the summer months of 2022. Several species' colonies were affected, most notably sandwich terns (Thalasseus sandvicensis), common terns (Sterna hirundo) and Germany's only northern gannet (Morus bassanus) colony on the island of Heligoland. Mortality in some tern colonies reached 40%, while other colonies were almost spared. In all cases, infections with the high-pathogenicity avian influenza virus (HPAIV) subtype H5N1 of clade 2.3.4.4b were identified to have caused the epidemic. Phylogenetic analysis of whole-genome sequences revealed that the outbreaks were dominated by two genotypes, Ger-10-21 N1.2 and Ger-10-21 N1.5, previously identified in Germany. Spatiotemporal analyses of phylogenetic data suggested that these viruses could have entered the continental North Sea coastal region via the British Isles. A close linkage of viruses from tern colonies in the German Wadden Sea was evident with further connections to breeding colonies in Belgium and the Netherlands, and further spread to Denmark and Poland. Several of the affected species are endangered, such that negative effects of epizootic HPAIV infections on populations are feared, with uncertain long-term consequences.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Animais , Influenza Aviária/epidemiologia , Virus da Influenza A Subtipo H5N1/genética , Filogenia , Virulência , Aves , Genótipo
12.
Pathogens ; 11(12)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36558837

RESUMO

On the African continent, a large number of arthropod-borne viruses (arboviruses) with zoonotic potential have been described, and yet little is known of most of these pathogens, including their actual distribution or genetic diversity. In this study, we evaluated as a proof-of-concept the effectiveness of the nonspecific sequencing technique sequence-independent single primer amplification (SISPA) on third-generation sequencing techniques (MinION sequencing, Oxford Nanopore Technologies, Oxford, UK) by comparing the sequencing results from six different samples of arboviruses known to be circulating in Africa (Crimean-Congo hemorrhagic fever virus (CCHFV), Rift Valley fever virus (RVFV), Dugbe virus (DUGV), Nairobi sheep disease virus (NSDV), Middleburg virus (MIDV) and Wesselsbron virus (WSLV)). All sequenced samples were derived either from previous field studies or animal infection trials. Using this approach, we were able to generate complete genomes for all six viruses without the need for virus-specific whole-genome PCRs. Higher Cq values in diagnostic RT-qPCRs and the origin of the samples (from cell culture or animal origin) along with their quality were found to be factors affecting the success of the sequencing run. The results of this study may stimulate the use of metagenomic sequencing approaches, contributing to a better understanding of the genetic diversity of neglected arboviruses.

13.
Virus Evol ; 8(2): veac073, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36533150

RESUMO

In winter 2016-7, Europe was severely hit by an unprecedented epidemic of highly pathogenic avian influenza viruses (HPAIVs), causing a significant impact on animal health, wildlife conservation, and livestock economic sustainability. By applying phylodynamic tools to virus sequences collected during the epidemic, we investigated when the first infections occurred, how many infections were unreported, which factors influenced virus spread, and how many spillover events occurred. HPAIV was likely introduced into poultry farms during the autumn, in line with the timing of wild birds' migration. In Germany, Hungary, and Poland, the epidemic was dominated by farm-to-farm transmission, showing that understanding of how farms are connected would greatly help control efforts. In the Czech Republic, the epidemic was dominated by wild bird-to-farm transmission, implying that more sustainable prevention strategies should be developed to reduce HPAIV exposure from wild birds. Inferred transmission parameters will be useful to parameterize predictive models of HPAIV spread. None of the predictors related to live poultry trade, poultry census, and geographic proximity were identified as supportive predictors of HPAIV spread between farms across borders. These results are crucial to better understand HPAIV transmission dynamics at the domestic-wildlife interface with the view to reduce the impact of future epidemics.

14.
Viruses ; 14(11)2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36366429

RESUMO

The interferon-induced myxovirus resistance protein A (MxA) is a potent restriction factor that prevents zoonotic infection from influenza A virus (IAV) subtype H7N9. Individuals expressing antivirally inactive MxA variants are highly susceptible to these infections. However, human-adapted IAVs have acquired specific mutations in the viral nucleoprotein (NP) that allow escape from MxA-mediated restriction but that have not been observed in MxA-sensitive, human H7N9 isolates. To date, it is unknown whether H7N9 can adapt to escape MxA-mediated restriction. To study this, we infected Rag2-knockout (Rag2-/-) mice with a defect in T and B cell maturation carrying a human MxA transgene (MxAtg/-Rag2-/-). In these mice, the virus could replicate for several weeks facilitating host adaptation. In MxAtg/-Rag2-/-, but not in Rag2-/- mice, the well-described mammalian adaptation E627K in the viral polymerase subunit PB2 was acquired, but no variants with MxA escape mutations in NP were detected. Utilizing reverse genetics, we could show that acquisition of PB2 E627K allowed partial evasion from MxA restriction in MxAtg/tg mice. However, pretreatment with type I interferon decreased viral replication in these mice, suggesting that PB2 E627K is not a true MxA escape mutation. Based on these results, we speculate that it might be difficult for H7N9 to acquire MxA escape mutations in the viral NP. This is consistent with previous findings showing that MxA escape mutations cause severe attenuation of IAVs of avian origin.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Influenza Aviária , Influenza Humana , Animais , Humanos , Camundongos , Subtipo H7N9 do Vírus da Influenza A/genética , Mamíferos , Mutação , Nucleoproteínas/genética , Replicação Viral , Zoonoses , Proteínas de Resistência a Myxovirus/metabolismo
15.
Microbiol Spectr ; 10(6): e0142422, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36445145

RESUMO

Recurring epizootic influenza A virus (IAV) infections in domestic livestock such as swine and poultry are associated with a substantial economic burden and pose a constant threat to human health. Therefore, universally applicable and safe animal vaccines are urgently needed. We recently demonstrated that a reassortment-incompatible chimeric bat H17N10 virus harboring the A/swan/Germany/R65/2006 (H5N1) surface glycoproteins hemagglutinin (HA) and neuraminidase (NA) can be efficiently used as a modified live influenza vaccine (MLIV). To ensure vaccine safety and, thus, improve the applicability of this novel MLIV for mammalian usage, we performed consecutive passaging in eggs and chickens. Following passaging, we identified mutations in the viral polymerase subunits PB2 (I382S), PB1 (Q694H and I695K), and PA (E141K). Strikingly, recombinant chimeric viruses encoding these mutations showed no growth deficiencies in avian cells but displayed impaired growth in human cells and mice. Homologous prime-boost immunization of mice with one of these avian-adapted chimeric viruses, designated rR65mono/H17N10EP18, elicited a strong neutralizing antibody response and conferred full protection against lethal highly pathogenic avian influenza virus (HPAIV) H5N1 challenge infection. Importantly, the insertion of the avian-adaptive mutations into the conventional avian-like A/SC35M/1980 (H7N7) and prototypic human A/PR/8/34 (H1N1) viruses led to attenuated viral growth in human cells and mice. Collectively, our data show that the polymerase mutations identified here can be utilized to further improve the safety of our novel H17N10-based MLIV candidates for future mammalian applications. IMPORTANCE Recurring influenza A virus outbreaks in livestock, particularly in swine and chickens, pose a constant threat to humans. Live attenuated influenza vaccines (LAIVs) might be a potent tool to prevent epizootic outbreaks and the resulting human IAV infections; however, LAIVs have several disadvantages, especially in terms of reassortment with circulating IAVs. Notably, the newly identified bat influenza A viruses H17N10 and H18N11 cannot reassort with conventional IAVs. Chimeric bat influenza A viruses encoding surface glycoproteins of conventional IAV subtypes might thus function as safe and applicable modified live influenza vaccines (MLIVs).


Assuntos
Quirópteros , Vírus da Influenza A , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Animais , Camundongos , Anticorpos Antivirais , Galinhas , Quirópteros/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A/genética , Vacinas contra Influenza/genética , Infecções por Orthomyxoviridae/prevenção & controle
16.
Emerg Infect Dis ; 28(12): 2383-2388, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36261139

RESUMO

Highly pathogenic avian influenza viruses (HPAIVs) of hemagglutinin type H5 and clade 2.3.4.4b have widely spread within the northern hemisphere since 2020 and threaten wild bird populations, as well as poultry production. We present phylogeographic evidence that Iceland has been used as a stepping stone for HPAIV translocation from northern Europe to North America by infected but mobile wild birds. At least 2 independent incursions of HPAIV H5N1 clade 2.3.4.4b assigned to 2 hemagglutinin clusters, B1 and B2, are documented for summer‒autumn 2021 and spring 2022. Spread of HPAIV H5N1 to and among colony-breeding pelagic avian species in Iceland is ongoing. Potentially devastating effects (i.e., local losses >25%) on these species caused by extended HPAIV circulation in space and time are being observed at several affected breeding sites throughout the North Atlantic.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Animais , Influenza Aviária/epidemiologia , Islândia/epidemiologia , Hemaglutininas , Vírus da Influenza A/genética , Animais Selvagens , Aves , Europa (Continente)/epidemiologia , América do Norte/epidemiologia , Filogenia
17.
Vaccine ; 40(43): 6255-6270, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36137904

RESUMO

Swine influenza A virus (swIAV) infections in pig populations cause considerable morbidity and economic losses. Frequent reverse zoonotic incursions of human IAV boost reassortment opportunities with authentic porcine and avian-like IAV in swine herds potentially enhancing zoonotic and even pre-pandemic potential. Vaccination using adjuvanted inactivated full virus vaccines is frequently used in attempting control of swIAV infections. Accelerated antigenic drift of swIAV in large swine holdings and interference of maternal antibodies with vaccine in piglets can compromise these efforts. Potentially more efficacious modified live-attenuated vaccines (MLVs) bear the risk of reversion of MLV to virulence. Here we evaluated new MLV candidates based on cold-passaged swIAV or on reassortment-incompetent bat-IAV-swIAV chimeric viruses. Serial cold-passaging of various swIAV subtypes did not yield unambiguously temperature-sensitive mutants although safety studies in mice and pigs suggested some degree of attenuation. Chimeric bat-swIAV expressing the hemagglutinin and neuraminidase of an avian-like H1N1, in contrast, proved to be safe in mice and pigs, and a single nasal inoculation induced protective immunity against homologous challenge in pigs. Reassortant-incompetent chimeric bat-swIAV vaccines could aid in reducing the amount of swIAV circulating in pig populations, thereby increasing animal welfare, limiting economic losses and lowering the risk of zoonotic swIAV transmission.


Assuntos
Quirópteros , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Anticorpos Antivirais , Hemaglutininas , Humanos , Influenza Humana/prevenção & controle , Camundongos , Neuraminidase/genética , Vírus Reordenados/genética , Suínos , Vacinas Atenuadas , Vacinas de Produtos Inativados
18.
Viruses ; 14(9)2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36146657

RESUMO

During autumn/winter in 2016-2017 and 2020-2021, highly pathogenic avian influenza viruses (HPAIV) caused severe outbreaks in Germany and Europe. Multiple clade 2.3.4.4b H5 HPAI subtypes were responsible for increased mortality in wild birds and high mortality and massive losses in the poultry sector. To clarify putative entry sources and delineate interconnections between outbreaks in poultry holdings and wild birds, we applied whole-genome sequencing and phylodynamic analyses combined with the results of epidemiological outbreak investigations. Varying outbreak dynamics of the distinct reassortants allowed for the identification of individual, putatively wild bird-mediated entries into backyard holdings, several clusters comprising poultry holdings, local virus circulation for several weeks, direct farm-to-farm transmission and potential reassortment within a turkey holding with subsequent spill-over of the novel reassorted virus into the wild bird population. Whole-genome sequencing allowed for a unique high-resolution molecular epidemiology analysis of HPAIV H5Nx outbreaks and is recommended to be used as a standard tool. The presented detailed account of the genetic, temporal, and geographical characteristics of the recent German HPAI H5Nx situation emphasizes the role of poultry holdings as an important source of novel genetic variants and reassortants.


Assuntos
Vírus da Influenza A , Influenza Aviária , Doenças das Aves Domésticas , Animais , Animais Selvagens , Aves , Surtos de Doenças/veterinária , Alemanha/epidemiologia , Vírus da Influenza A/genética , Filogenia , Aves Domésticas , Doenças das Aves Domésticas/epidemiologia
19.
mBio ; 13(4): e0060922, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35726917

RESUMO

Phylogenetic evidence from the recent resurgence of high-pathogenicity avian influenza (HPAI) virus subtype H5N1, clade 2.3.4.4b, observed in European wild birds and poultry since October 2021, suggests at least two different and distinct reservoirs. We propose contrasting hypotheses for this emergence: (i) resident viruses have been maintained, presumably in wild birds, in northern Europe throughout the summer of 2021 to cause some of the outbreaks that are part of the most recent autumn/winter 2021 epizootic, or (ii) further virus variants were reintroduced by migratory birds, and these two sources of reintroduction have driven the HPAI resurgence. Viruses from these two principal sources can be distinguished by their hemagglutinin genes, which segregate into two distinct sublineages (termed B1 and B2) within clade 2.3.4.4b, as well as their different internal gene compositions. The evidence of enzootic HPAI virus circulation during the summer of 2021 indicates a possible paradigm shift in the epidemiology of HPAI in Europe.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Animais , Animais Selvagens , Aves , Europa (Continente)/epidemiologia , Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Filogenia , Aves Domésticas
20.
Virus Evol ; 8(1): veac035, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35478715

RESUMO

From October 2020 to July 2021, five different subtypes (H5N8, H5N5, H5N1, H5N4, and H5N3) and seven genotypes of highly pathogenic avian influenza viruses (HPAIV) belonging to clade 2.3.4.4b were detected in a broad array of avian hosts in Germany. Initial incursion by wild birds with an unprecedented involvement of charadriiforme species at the Wadden Sea coast only carrying subtype H5N3, lateral spread between poultry with detection of novel reassortants and mixed infections in poultry holdings, suspected spillback of HPAIV from poultry to wild birds, and detection of HPAIV-infected wild birds during the following summer in 2021 were hallmarks of this epizootic. Local reassortment events with low pathogenic AIV strains were detected by phylogenetic analyses, with a dominating HP H5N8 and later HP H5N1 strain responsible for most cases. In addition, the first-ever described HPAIV strain of subtype H5N4 could be genetically characterized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA