Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Magn Reson Imaging ; 60(2): 777-788, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38305462

RESUMO

BACKGROUND: The minimum admissible detuning efficiency (DE) of a receive coil is an essential parameter for coil designers. A receive coil with inefficient detuning leads to inhomogeneous B1 during excitation. Previously proposed criteria for quantifying the DE rely on indirect measurements and are difficult to implement. PURPOSE: To present an alternative method to quantify the DE of receive-only surface coils. STUDY TYPE: Theoretical study supported by simulations and phantom experiments. PHANTOMS: Uniform spherical (100 mm diameter) and cylindrical (66 mm diameter) phantoms. FIELD STRENGTH/SEQUENCE: Dual repetition time B1 mapping sequence at 1.5T, and Bloch-Siegert shift B1 mapping sequence at 3.0T. ASSESSMENT: One non-planar (80 × 43 mm2) and two planar (40 and 57 mm diameter) surface coils were built. Theoretical analysis was performed to determine the minimum DE required to avoid B1 distortions. Experimental B1 maps were acquired for the non-planar and planar surface coils at both 1.5T and 3.0T and visually compared with simulated B1 maps to assess the validity of the theoretical analysis. STATISTICAL TESTS: None. RESULTS: Based on the theoretical analysis, the proposed minimum admissible DE, defined as DEthr = 20 Log (Q) + 13 dB, depended only on the quality factor (Q) of the coil and was independent of coil area and field strength. Simulations and phantom experiments showed that when the DE was higher than this minimum threshold level, the B1 field generated by the transmission coil was not modified by the receive coil. DATA CONCLUSION: The proposed criterion for assessing the DE is simple to measure, and does not depend on the area of the coil or on the magnetic field strength, up to 3T. Experimental and simulated B1 maps confirmed that detuning efficiencies above the theoretically derived minimal admissible DE resulted in a non-distorted B1 field. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.


Assuntos
Simulação por Computador , Desenho de Equipamento , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Imageamento por Ressonância Magnética/instrumentação , Reprodutibilidade dos Testes , Humanos , Processamento de Imagem Assistida por Computador , Algoritmos , Modelos Teóricos
2.
Front Cardiovasc Med ; 10: 1249572, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028485

RESUMO

Introduction: Interventional cardiac MRI in the context of the treatment of cardiac arrhythmia requires submillimeter image resolution to precisely characterize the cardiac substrate and guide the catheter-based ablation procedure in real-time. Conventional MRI receiver coils positioned on the thorax provide insufficient signal-to-noise ratio (SNR) and spatial selectivity to satisfy these constraints. Methods: A small circular MRI receiver coil was developed and evaluated under different experimental conditions, including high-resolution MRI anatomical and thermometric imaging at 1.5 T. From the perspective of developing a therapeutic MR-compatible catheter equipped with a receiver coil, we also propose alternative remote active detuning techniques of the receiver coil using one or two cables. Theoretical details are presented, as well as simulations and experimental validation. Results: Anatomical images of the left ventricle at 170 µm in-plane resolution are provided on ex vivo beating heart from swine using a 2 cm circular receiver coil. Taking advantage of the increase of SNR at its vicinity (up to 35 fold compared to conventional receiver coils), real-time MR-temperature imaging can reach an uncertainty below 0.1°C at the submillimetric spatial resolution. Remote active detuning using two cables has similar decoupling efficiency to conventional on-site decoupling, at the cost of an acceptable decrease in the resulting SNR. Discussion: This study shows the potential of small dimension surface coils for minimally invasive therapy of cardiac arrhythmia intraoperatively guided by MRI. The proposed remote decoupling approaches may simplify the construction process and reduce the cost of such single-use devices.

3.
NMR Biomed ; 35(7): e4701, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35088465

RESUMO

Magnetic resonance elastography aims to non-invasively and remotely characterize the mechanical properties of living tissues. To quantitatively and regionally map the shear viscoelastic moduli in vivo, the technique must achieve proper mechanical excitation throughout the targeted tissues. Although it is straightforward, ante manibus, in close organs such as the liver or the breast, which practitioners clinically palpate already, it is somewhat fortunately highly challenging to trick the natural protective barriers of remote organs such as the brain. So far, mechanical waves have been induced in the latter by shaking the surrounding cranial bones. Here, the skull was circumvented by guiding pressure waves inside the subject's buccal cavity so mechanical waves could propagate from within through the brainstem up to the brain. Repeatable, reproducible and robust displacement fields were recorded in phantoms and in vivo by magnetic resonance elastography with guided pressure waves such that quantitative mechanical outcomes were extracted in the human brain.


Assuntos
Técnicas de Imagem por Elasticidade , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Elasticidade , Técnicas de Imagem por Elasticidade/métodos , Humanos , Imageamento por Ressonância Magnética , Imagens de Fantasmas
4.
Rev Sci Instrum ; 91(5): 055106, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32486746

RESUMO

Small-sized High Temperature Superconducting (HTS) radiofrequency coils are used in a number of micro-magnetic resonance imaging applications and demonstrate a high detection sensitivity that improves the signal-to-noise ratio. However, the use of HTS coils could be limited by the rarity of cryostats that are suitable for the MR environment. This study presents a magnetic resonance (MR)-compatible and easily operated cryogen-free cryostat based on the pulse tube cryocooler technology for the cooling and monitoring of HTS coils below the temperature of liquid nitrogen. This cryostat features a real-time temperature control function that allows the precise frequency adjustment of the HTS coil. The influence of the temperature on the electrical properties, resonance frequency (f0), and quality factor (Q) of the HTS coil was investigated. Temperature control is obtained with an accuracy of over 0.55 K from 60 K to 86 K, and the sensitivity of the system, extracted from the frequency measurement from 60 K to 75 K, is of about 2 kHz/K, allowing a fine retuning (within few Hz, compared to 10 kHz bandwidth) in good agreement with experimental requirements. We demonstrated that the cryostat, which is mainly composed of non-magnetic materials, does not perturb the electromagnetic field in any way. MR images of a 10 × 10 × 15 mm3 liquid phantom were acquired using the HTS coil as a transceiver with a spatial resolution of 100 × 100 × 300 µm3 in less than 20 min under experimental conditions at 1.5 T.

5.
J Magn Reson ; 296: 47-59, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30205313

RESUMO

A flexible transceiver array based on transmission line resonators (TLRs) combining the advantages of coil arrays with the possibility of form-fitting targeting cardiac MRI at 7 T is presented. The design contains 12 elements which are fabricated on a flexible substrate with rigid PCBs attached on the center of each element to place the interface components, i.e. transmit/receive (T/R) switch, power splitter, pre-amplifier and capacitive tuning/matching circuitry. The mutual coupling between elements is cancelled using a decoupling ring-based technique. The performance of the developed array is evaluated by 3D electromagnetic simulations, bench tests, and MR measurements using phantoms. Efficient inter-element decoupling is demonstrated in flat configuration on a box-shaped phantom (Sij < -19 dB), and bent on a human torso phantom (Sij < -16 dB). Acceleration factors up to 3 can be employed in bent configuration with reasonable g-factors (<1.7) in an ROI at the position of the heart. The array enables geometrical conformity to bodies within a large range of size and shape and is compatible with parallel imaging and parallel transmission techniques.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Simulação por Computador , Campos Eletromagnéticos , Coração/diagnóstico por imagem , Humanos , Aumento da Imagem , Imagens de Fantasmas , Ondas de Rádio , Razão Sinal-Ruído , Tronco/diagnóstico por imagem
6.
Contrast Media Mol Imaging ; 2017: 7498538, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29097936

RESUMO

Molecular magnetic resonance imaging targeted to an endothelial integrin involved in neoangiogenesis was compared to DCE-US and immunochemistry to assess the early response of three different therapeutic agents in renal cell carcinoma. Human A498 renal cells carcinoma was subcutaneously inoculated into 24 nude mice. Mice received either phosphate-buffered saline solution, sunitinib, everolimus, or bevacizumab during 4 days. DCE-US and molecular MRI targeting αvß3 were performed at baseline and 4 days after treatment initiation. PI, AUC, relaxation rate variations ΔR2⁎, and percentage of vessels area quantified on CD31-stained microvessels were compared. Significant decreases were observed for PI and AUC parameters measured by DCE-US for bevacizumab group as early as 4 days, whereas molecular αvß3-targeted MRI was able to detect significant changes in both bevacizumab and everolimus groups. Percentage of CD31-stained microvessels was significantly correlated with DCE-US parameters, PI (R = 0.87, p = 0.0003) and AUC (R = 0.81, p = 0.0013). The percentage of vessel tissue area was significantly reduced (p < 0.01) in both sunitinib and bevacizumab groups. We report an early detection of neoangiogenesis modification after induction of targeted therapies, using DCE-US or αvß3-targeted MRI. We consider these outcomes should encourage clinical trial developments to further evaluate the potential of this molecular MRI technique.


Assuntos
Carcinoma de Células Renais/diagnóstico por imagem , Imagem Molecular/métodos , Terapia de Alvo Molecular/métodos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Carcinoma de Células Renais/irrigação sanguínea , Carcinoma de Células Renais/tratamento farmacológico , Linhagem Celular Tumoral , Everolimo/farmacologia , Everolimo/uso terapêutico , Xenoenxertos , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Pirróis/farmacologia , Pirróis/uso terapêutico , Sunitinibe , Resultado do Tratamento
7.
J Magn Reson ; 273: 65-72, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27750073

RESUMO

A novel design scheme for monolithic transmission line resonators (TLRs) is presented - the multi-turn multi-gap TLR (MTMG-TLR) design. The MTMG-TLR design enables the construction of TLRs with multiple turns and multiple gaps. This presents an additional degree of freedom in tuning self-resonant TLRs, as their resonance frequency is fully determined by the coil geometry (e.g. diameter, number of turns, conductor width, etc.). The novel design is evaluated at 4.7T and 7T by simulations and experiments, where it is demonstrated that MTMG-TLRs can be used for MRI, and that the B1 distribution of MTMG-TLRs strongly depends on the number and distribution of turns. A comparison to conventional loop coils revealed that the B1 performance of MTMG-TLRs is comparable to a loop coil with the same mean diameter; however, lower 10g SAR values were found for MTMG-TLRs. The MTMG-TLR design is expected to bring most benefits at high static field, where it allows for independent size and frequency selection, which cannot be achieved with standard TLR design. However, it also enables more accurate geometric optimization at low static field. Thereby, the MTMG-TLR design preserves the intrinsic advantages of TLRs, i.e. mechanical flexibility, high SAR efficiency, mass production, and coil miniaturization.

8.
J Magn Reson Imaging ; 42(4): 1100-5, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25865335

RESUMO

PURPOSE: To investigate the feasibility of detecting a living cell monolayer labeled with gadoterate (Gd-DOTA) in a microfluidic environment, by micromagnetic resonance imaging (MRI) in a 2.35T small-animal system. The development of new targeted contrast agents (CAs) requires proof-of-concept studies in order to establish the detectability of the CA and to predict the role of biodistribution in its uptake mechanisms. A promising approach is to carefully mimic the in vivo pharmacokinetic context with reduced experimental complexity compared to in vivo situations. MATERIALS AND METHODS: A dedicated experimental system was built by combining a microfluidic slide and a radiofrequency probe based on a 6 mm diameter multiturn transmission-line resonator. Adherent KB cells were incubated with different concentrations of Gd. MRI data were acquired at 2.35T with a 3D gradient echo and a resolution of 12.4 µm perpendicular to the cell layer. The longitudinal relaxation rate, R1 , was measured as a function of the amount of Gd internalized by the cells. RESULTS: R1 measurements for different Gd concentrations per cell were performed using data with an signal-to-noise ratio (SNR) of 100. Relaxation-rate variations ΔR1 of 0.035 s(-1) were measured. A quenching effect was observed at Gd concentrations above 20 fmol/cell. CONCLUSION: Our results suggest that this dedicated experimental system is suitable for specifically assessing new high-relaxivity targeted CAs under real-time uptake conditions.


Assuntos
Rastreamento de Células/métodos , Compostos Heterocíclicos/farmacocinética , Dispositivos Lab-On-A-Chip/veterinária , Imageamento por Ressonância Magnética/instrumentação , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Compostos Organometálicos/farmacocinética , Animais , Rastreamento de Células/veterinária , Meios de Contraste/farmacocinética , Desenho de Equipamento , Análise de Falha de Equipamento , Estudos de Viabilidade , Humanos , Células KB , Imageamento por Ressonância Magnética/veterinária , Coloração e Rotulagem , Microambiente Tumoral
9.
J Magn Reson Imaging ; 41(2): 496-504, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24382749

RESUMO

PURPOSE: To demonstrate the feasibility of a highly sensitive superconducting surface coil for microscopic MRI of the human skin in vivo in a clinical 1.5 Tesla (T) scanner. MATERIALS AND METHODS: A 12.4-mm high-temperature superconducting coil was used at 1.5T for phantom and in vivo skin imaging. Images were inspected to identify fine anatomical skin structures. Signal-to-noise ratio (SNR) improvement by the high-temperature superconducting (HTS) coil, as compared to a commercial MR microscopy coil was quantified from phantom imaging; the gain over a geometrically identical coil made from copper (cooled or not) was theoretically deduced. Noise sources were identified to evaluate the potential of HTS coils for future studies. RESULTS: In vivo skin images with isotropic 80 µm resolution were demonstrated revealing fine anatomical structures. The HTS coil improved SNR by a factor 32 over the reference coil in a nonloading phantom. For calf imaging, SNR gains of 380% and 30% can be expected over an identical copper coil at room temperature and 77 K, respectively. CONCLUSION: The high sensitivity of HTS coils allows for microscopic imaging of the skin at 1.5T and could serve as a tool for dermatology in a clinical setting.


Assuntos
Aumento da Imagem/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Pele/ultraestrutura , Estudos de Viabilidade , Humanos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Razão Sinal-Ruído
10.
Magn Reson Med ; 73(4): 1669-81, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24753115

RESUMO

PURPOSE: This article presents a novel inductive decoupling technique for form-fitting coil arrays of monolithic transmission line resonators, which target biomedical applications requiring high signal-to-noise ratio over a large field of view to image anatomical structures varying in size and shape from patient to patient. METHODS: Individual transmission line resonator elements are mutually decoupled using magnetic flux sharing by overlapping annexes. This decoupling technique was evaluated by electromagnetic simulations and bench measurements for two- and four-element arrays, comparing single- and double-gap transmission line resonator designs, combined either with a basic capacitive matching scheme or inductive pickup loop matching. The best performing array was used in 7T MRI experiments demonstrating its form-fitting ability and parallel imaging potential. RESULTS: The inductively matched double-gap transmission line resonator array provided the best decoupling efficiency in simulations and bench measurements (<-15 dB). The decoupling and parallel imaging performance proved robust against mechanical deformation of the array. CONCLUSION: The presented decoupling technique combines the robustness of conventional overlap decoupling regarding coil loading and operating frequency with the extended field of view of nonoverlapped coils. While demonstrated on four-element arrays, it can be easily expanded to fabricate readily decoupled form-fitting 2D arrays with an arbitrary number of elements in a single etching process.


Assuntos
Eletrônica Médica/instrumentação , Aumento da Imagem/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Magnetismo/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Rev Sci Instrum ; 84(5): 054701, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23742569

RESUMO

The present work investigates the joined effects of temperature and static magnetic field on the electrical properties of a 64 MHz planar high-temperature superconducting (HTS) coil, in order to enhance the signal-to-noise ratio (SNR) in nuclear magnetic resonance (NMR) applications with a moderate decrease of the HTS coil temperature (T(HTS)). Temperature control is provided with accuracy better than 0.1 K from 80 to 66 K by regulating the pressure of the liquid nitrogen bath of a dedicated cryostat. The actual temperature of the HTS coil is obtained using a straightforward wireless method that eliminates the risks of coupling electromagnetic interference to the HTS coil and of disturbing the static magnetic field by DC currents near the region of interest. The resonance frequency (f0) and the quality factor (Q) of the HTS coil are measured as a function of temperature in the 0-4.7 T field range with parallel and orthogonal orientations relative to the coil plane. The intrinsic HTS coil sensitivity and the detuning effect are then analyzed from the Q and f0 data. In the presence of the static magnetic field, the initial value of f0 in Earth's field could be entirely recovered by decreasing T(HTS), except for the orthogonal orientation above 1 T. The improvement of Q by lowering T(HTS) was substantial. From 80 to 66 K, Q was multiplied by a factor of 6 at 1.5 T in orthogonal orientation. In parallel orientation, the maximum measured improvement of Q from 80 K to 66 K was a factor of 2. From 80 to 66 K, the improvement of the RF sensitivity relative to the initial value at the Earth's field and ambient pressure was up to 4.4 dB in parallel orientation. It was even more important in orthogonal orientation and continued to increase, up to 8.4 dB, at the maximum explored field of 1.5 T. Assuming that the noise contributions from the RF receiver are negligible, the SNR improvement using enhanced HTS coil cooling in NMR experiments was extracted from Q measurements either with or without the presence of the sample. Notably, the additional cooling in the presence of conductive samples appears more beneficial at higher field strengths and with an orthogonal incidence than with parallel. The temperature range accessible here, involving a relatively straightforward cryogenic design, brings a gain in RF sensitivity that is of great significance to cutting-edge applications with very weakly conducting samples, small biological specimens, or small animals in vivo. This work also demonstrates a better tolerance to thin-film orientation misalignments relative to the magnetic field, and this could eventually play a role in designing effective non-planar HTS coils or coil arrays which include elements of various orientations. Finally, the data provided in this work may help understand some critical aspects in the design of HTS coils for NMR and MRI applications and accounts for the presence of the static magnetic field, particularly regarding the SNR loss due to a decreased quality factor and detuning issues.

12.
Radiology ; 263(3): 786-93, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22523321

RESUMO

PURPOSE: To investigate whether cellular imaging by using ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance (MR) imaging can allow detection and quantification of adipose tissue macrophage-related inflammation within adipose tissue in a mouse model. MATERIALS AND METHODS: Experimental protocols were conducted in accordance with French government policies. Adipose tissue macrophages were detected and quantified with a 4.7-T MR imager in ob/ob obese mice on the basis of the signal variance of adipose tissue triggered by injection of P904 iron oxide nanoparticles (USPIO). Mice were either intravenously injected with 1000 µmol of iron per kilogram of body weight of P904 (10 ob/ob and 11 ob/+) or used as noninjected control animals (seven ob/ob and six ob/+). Three-dimensional T2*-weighted gradient-echo MR images were acquired 10 days after intravenous injection. MR imaging signal variance in mice was correlated to adipose tissue macrophage quantification by using monoclonal antibody to F4/80 immunostaining, to proinflammatory marker quantification by using reverse transcription polymerase chain reaction (CCl2, Tnfα, Emr1), and to P904 quantification by using electron paramagnetic resonance imaging. Quantitative data were compared by using the Mann-Whitney or Student t test, and correlations were performed by using the Pearson correlation test. RESULTS: MR imaging measurements showed a significant increase in adipose tissue signal variance in ob/ob mice compared with ob/+ controls or noninjected animals (P < .0001), which was consistent with increased P904 uptake by adipose tissue in ob/ob mice. There was a significant and positive correlation between adipose tissue macrophage quantification at MR imaging and P904 iron oxide content (r = 0.87, P < .0001), adipose tissue macrophage-related inflammation at immunohistochemistry (r = 0.60, P < .01), and adipose tissue proinflammatory marker expression (r = 0.55, 0.56, and 0.58 for CCl2, Tnfα, and Emr1, respectively; P < .01). CONCLUSION: P904 USPIO-enhanced MR imaging is potentially a tool for noninvasive assessment of adipose tissue inflammation during experimental obesity. These results provide the basis for translation of MR imaging into clinical practice as a marker of patients at risk for metabolic syndrome.


Assuntos
Tecido Adiposo/citologia , Meios de Contraste/metabolismo , Dextranos/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Imageamento por Ressonância Magnética/métodos , Obesidade/patologia , Análise de Variância , Animais , Artefatos , Meios de Contraste/administração & dosagem , Dextranos/administração & dosagem , Imageamento Tridimensional , Imuno-Histoquímica , Inflamação/imunologia , Ativação de Macrófagos , Nanopartículas de Magnetita/administração & dosagem , Camundongos , Obesidade/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estatísticas não Paramétricas
13.
Biophys J ; 101(11): 2833-42, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22261073

RESUMO

Plasma membrane water transport is a crucial cellular phenomenon. Net water movement in response to an osmotic gradient changes cell volume. Steady-state exchange of water molecules, with no net flux or volume change, occurs by passive diffusion through the phospholipid bilayer and passage through membrane proteins. The hypothesis is tested that plasma membrane water exchange also correlates with ATP-driven membrane transport activity in yeast (Saccharomyces cerevisiae). Longitudinal (1)H(2)O NMR relaxation time constant (T(1)) values were measured in yeast suspensions containing extracellular relaxation reagent. Two-site-exchange analysis quantified the reversible exchange kinetics as the mean intracellular water lifetime (τ(i)), where τ(i)(-1) is the pseudo-first-order rate constant for water efflux. To modulate cellular ATP, yeast suspensions were bubbled with 95%O(2)/5%CO(2) (O(2)) or 95%N(2)/5%CO(2) (N(2)). ATP was high during O(2), and τ(i)(-1) was 3.1 s(-1) at 25°C. After changing to N(2), ATP decreased and τ(i)(-1) was 1.8 s(-1). The principal active yeast ion transport protein is the plasma membrane H(+)-ATPase. Studies using the H(+)-ATPase inhibitor ebselen or a yeast genetic strain with reduced H(+)-ATPase found reduced τ(i)(-1), notwithstanding high ATP. Steady-state water exchange correlates with H(+)-ATPase activity. At volume steady state, water is cycling across the plasma membrane in response to metabolic transport activity.


Assuntos
Membrana Celular/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Água/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Transporte Biológico Ativo , Espaço Extracelular/metabolismo , Espaço Intracelular/metabolismo , Cinética , Modelos Biológicos , Oxigênio/metabolismo , Fatores de Tempo
14.
Nanomedicine (Lond) ; 5(5): 727-38, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20662644

RESUMO

AIMS: Submicron membrane fragments termed microparticles (MPs), which are released by apoptotic or activated cells, are newly considered as vectors of biological information and actors of pathology development. We propose the tagging of MPs with magnetic nanoparticles as a new approach allowing imaging, manipulation and targeting of cell-derived MPs. MATERIALS & METHODS: MPs generated in vitro from human endothelial cells or isolated from atherosclerotic plaques were labeled using citrate-coated 8 nm iron-oxide nanoparticles. MPs were tagged with magnetic nanoparticles on their surface and detected as Annexin-V positive by flow cytometry. RESULTS: Labeled MPs could be mobilized, isolated and manipulated at a distance in a magnetic field gradient. Magnetic mobility of labeled MPs was quantified by micromagnetophoresis. Interactions of labeled MPs with endothelial cells could be triggered and modulated by magnetic guidance. Nanoparticles served as tracers at different scales: at the subcellular level by electron microscopy, at the cellular level by histology and at the macroscopic level by MRI. CONCLUSION: Magnetic labeling of biogenic MPs opens new prospects for noninvasive monitoring and distal manipulations of these biological effectors.


Assuntos
Aterosclerose/patologia , Micropartículas Derivadas de Células/metabolismo , Células Endoteliais/citologia , Compostos Férricos , Magnetismo , Nanopartículas , Anexina A5/metabolismo , Linhagem Celular , Micropartículas Derivadas de Células/patologia , Ácido Cítrico/química , Citometria de Fluxo , Humanos , Imageamento por Ressonância Magnética , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura
15.
Tissue Eng Part C Methods ; 16(2): 185-200, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19438301

RESUMO

Tissue-engineered scaffolds are made of biocompatible polymers with various structures, allowing cell seeding, growth, and differentiation. Noninvasive imaging methods are needed to study tissue-engineered constructs before and after implantation. Here, we show that high-resolution magnetic resonance imaging (MRI) performed on a clinical 1.5-T device is a reliable technique to assess three-dimensional structures of porous scaffolds and to validate cell-seeding procedures. A high-temperature superconducting detection coil was used to achieve a resolution of 30 x 30 x 30 microm(3) when imaging the scaffolds. Three types of structures with tuneable architectures were prepared from naturally derived polysaccharides and evaluated as scaffolds for mesenchymal stem cell (MSC) culture. To monitor cell seeding, MSCs were magnetically labeled using simple incubation with anionic citrate-coated iron-oxide nanoparticles for 30 min. Iron uptake was quantified using single-cell magnetophoresis, and cell proliferation was checked for 7 days after labeling. Three-dimensional (3D) microstructures of scaffolds were assessed using MRI, revealing lamellar or globular porous organization according to the scaffold preparation process. MSCs with different iron load (5, 12 and 31 pg of iron per cell) were seeded on scaffolds at low density (132 cells/mm(3)) and detected on 3D gradient-echo MR images according to phase distortions and areas of intensely low signal, whose size increased with cell iron load and echo time. Overall signal loss in the scaffold correlated with the number of seeded cells and their iron load. Different organizations of cells were observed depending on the scaffold architecture. After subcutaneous implantation in mice, scaffolds seeded with labeled cells could be distinguished in vivo from scaffold with nonlabeled cells by observation of signal and phase heterogeneities and by measuring the global signal loss. High-resolution 1.5-T MRI combined with efficient intracellular contrast agents shows promise for noninvasive 3D visualization of tissue-engineered constructs before and after in vivo implantation.


Assuntos
Transplante de Células/diagnóstico por imagem , Transplante de Células/reabilitação , Imageamento por Ressonância Magnética/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Materiais Biocompatíveis/química , Técnicas de Cultura de Células , Células Cultivadas , Compostos Férricos/química , Humanos , Imageamento Tridimensional , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Radiografia , Alicerces Teciduais/química
16.
Magn Reson Med ; 60(6): 1292-7, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19030162

RESUMO

We demonstrate the feasibility of detecting individual tumor-infiltrating cells in vivo, by means of cellular magnetic labeling and a 1.5 Tesla clinical MRI device equipped with a high-resolution surface coil. Using a recently developed high-temperature superconducting (HTS) surface coil, single cells were detected in vitro in voxels of (60 microm)(3) at magnetic loads as low as 0.2 pg of iron per cell. The same imaging protocol was used in vivo to monitor infiltration of ovalbumin-expressing tumors by transferred OVA antigen-specific cytotoxic lymphocytes with low iron load.


Assuntos
Aumento da Imagem/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Magnetismo/instrumentação , Neoplasias/patologia , Infiltração de Neutrófilos , Linfócitos T/patologia , Animais , Linhagem Celular , Meios de Contraste , Desenho de Equipamento , Análise de Falha de Equipamento , Estudos de Viabilidade , Compostos Férricos , Magnetismo/métodos , Camundongos , Camundongos Endogâmicos C57BL
17.
Magn Reson Med ; 60(4): 917-27, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18816812

RESUMO

The performance of a 12-mm high-temperature superconducting (HTS) surface coil for in vivo microimaging of mice in a standard 1.5T clinical whole-body scanner was investigated. Systematic evaluation of MR image quality was conducted on saline phantoms with various conductivities to derive the sensitivity improvement brought by the HTS coil compared with a similar room-temperature copper coil. The observed signal-to-noise ratio (SNR) was correlated to the loaded quality factor of the radio frequency (RF) coils and is theoretically validated with respect to the noise contribution of the MR acquisition channel. The expected in vivo SNR gain was then extrapolated for different anatomical sites by monitoring the quality factor in situ during animal imaging experiments. Typical SNR gains of 9.8, 9.8, 5.4, and 11.6 were found for brain, knee, back, and subcutaneous implanted tumors, respectively, over a series of mice. Excellent in vivo image quality was demonstrated in 16 min with native voxels down to (59 microm)(3) with an SNR of 20. The HTS coil technology opens the way, for the first time at the current field strength of clinical MR scanners, to spatial resolutions below 10(-3) mm(3) in living mice, which until now were only accessible to specialized high-field MR microscopes.


Assuntos
Aumento da Imagem/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Neoplasias Mamárias Animais/patologia , Transdutores , Imagem Corporal Total/instrumentação , Animais , Linhagem Celular Tumoral , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Camundongos , Camundongos Nus , Miniaturização , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Methods ; 43(1): 54-67, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17720564

RESUMO

Signal-to-noise ratio improvement is of major importance to achieve microscopic spatial resolution in magnetic resonance experiments. Magnetic resonance imaging of small animals is particularly concerned since it typically requires voxels of less than (100 microm)(3) to observe the small anatomical structures having size reduction by a factor of more than 10 as compared to human being. The signal-to-noise ratio can be increased by working at high static magnetic field strengths, but the biomedical interest of such high-field systems may be limited due to field-dependent contrast mechanisms and severe technological difficulties. An alternative approach that allows working in clinical imaging system is to improve the sensitivity of the radio-frequency receiver coil. This can be done using small cryogenically operated coils made either of copper or high-temperature superconducting material. We report the technological development of cryo-cooled superconducting coils for high-resolution imaging in a whole-body magnetic resonance scanner operating at 1.5 T. The technological background supporting this development is first addressed, including HTS coil design, simulation tools, cryogenic mean description and electrical characterization procedure. To illustrate the performances of superconducting coils for magnetic resonance imaging at intermediate field strength, in-vivo mouse images of various anatomic sites acquired with a 12 mm diameter cryo-cooled superconducting coil are presented.


Assuntos
Desenho de Equipamento , Aumento da Imagem/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Anatomia Regional , Animais , Artefatos , Tamanho Corporal , Congelamento , Aumento da Imagem/métodos , Imageamento Tridimensional , Imageamento por Ressonância Magnética/métodos , Neoplasias Mamárias Experimentais/diagnóstico , Ciência de Laboratório Médico , Camundongos , Sensibilidade e Especificidade , Tela Subcutânea/patologia , Condutividade Térmica , Imagem Corporal Total/instrumentação
19.
Rev Sci Instrum ; 78(12): 124703, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18163742

RESUMO

A contactless method based on reflectometry to accurately characterize an inductive radio frequency (rf) resonator even in the occurrence of a strong electrical nonlinearity is presented. Nonlinear extraction of the unloaded quality factor and resonance frequency is possible by combining an initial low-level swept-frequency calibration with high-level single-frequency measurements. The extraction protocol relies on a simple intrinsic R, L, C model and does not involve a fitting procedure according to a particular nonlinearity model. It includes a correction for strong coupling conditions between the probe and the rf coil, which allows extending the analysis over a wide range of transmitted power. Electrical modeling based on the extracted intrinsic data allows predicting the coil behavior when loaded by any kind of matching network. The method will have implications in different domains such as Magnetic Resonance (MR) applications with superconducting probe heads or analysis of rf properties in nonlinear materials. The method is demonstrated here by characterizing a high temperature superconducting (HTS) coil dedicated to MR imaging at 64 MHz. The coil consists in a multiturn spiral design that is self-resonant close to the MR frequency of interest. The Q factor and the resonance frequency are determined as a function of the actual power dissipated in the HTS coil accounting for losses occurring in the measurement system. Further characteristics of the HTS coil are considered in the present paper. The relation between the transmitted power and the magnetic field generated by the coil, which is the most relevant characteristics for MR applications, is directly accessible. The equivalent impedance of the coil under test is also expressed as a function of the total current flowing in the windings. The method could be extended to assess the fundamental properties of the nonlinear material (e.g., the London penetration depth or the critical current density) by including any pertinent model.


Assuntos
Desenho Assistido por Computador , Imageamento por Ressonância Magnética/instrumentação , Magnetismo/instrumentação , Modelos Teóricos , Transdutores , Simulação por Computador , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Dinâmica não Linear , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Magn Reson Imaging ; 23(2): 239-43, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15833619

RESUMO

Magnetic resonance imaging (MRI) is well suited for small animal model investigations to study various human pathologies. However, the assessment of microscopic information requires a high-spatial resolution (HSR) leading to a critical problem of signal-to-noise ratio limitations in standard whole-body imager. As contrast mechanisms are field dependent, working at high field do not allow to derive MRI criteria that may apply to clinical settings done in standard whole-body systems. In this work, a contrast-enhanced dynamic MRI protocol with improved spatial and time resolution was used to perform in vivo tumor model imaging on the mouse at 1.5 T. The needed sensitivity is provided by the use of a 12-mm superconducting surface coil operating at 77 K. High quality in vivo images were obtained and revealed well-defined internal structures of the tumor. A 3-D HSR sequence with voxels of 59x59x300 microm3 encoded within 6.9 min and a 2-D sequence with subsecond acquisition time and isotropic in-plane resolution of 234 microm were used to analyze the contrast enhancement kinetics in tumoral structures at long and short time scales. This work is a first step to better characterize and differentiate the dynamic behavior of tumoral heterogeneities.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias Mamárias Experimentais/patologia , Animais , Meios de Contraste , Feminino , Gadolínio , Compostos Heterocíclicos , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética/instrumentação , Camundongos , Camundongos Nus , Compostos Organometálicos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA