Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38931364

RESUMO

Statins function beyond regulating cholesterol and, when administered systemically, can promote wound healing. However, studies have yet to explore the topical use of statins for wound healing. The present study demonstrated the topical administration of SIM and aimed to formulate, evaluate, and optimize Simvastatin (SIM)-encapsulated liposome gel carrier systems to facilitate successful topical wound healing. Liposomes containing SIM were formulated and optimized via a response surface methodology (RSM) using the thin-film hydration method. The effects of formulation variables, including the 1,2-dioleoyloxy-3-trimethylammoniumpropan (DOTAP) concentration, Span 80 concentration, and cholesterol concentration, on zeta potential (mV), entrapment efficacy (%), and particle size (nm) were studied. The optimized liposome formulation (F-07) exhibited a zeta potential value of 16.56 ± 2.51 mV, revealing robust stability and a high SIM encapsulation efficiency of 95.6 ± 4.2%, whereas its particle size of 190.3 ± 3.3 nm confirmed its stability and structural integrity. The optimized liposome gel demonstrated pseudoplastic flow behavior. This property is advantageous in topical drug delivery systems because of its ease of application, improved spreadability, and enhanced penetration, demonstrating prolonged SIM release. The assessment of the wound healing efficacy of the optimized liposomal gel formulation demonstrated a substantial decrease in wound size in mice on the sixteenth day post-wounding. These findings suggest that the use of liposomal gels is a potential drug delivery strategy for incorporating SIM, thereby augmenting its effectiveness in promoting wound healing.

2.
Polymers (Basel) ; 15(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36850286

RESUMO

Luliconazole is a broad-spectrum topical antifungal agent that acts by altering the synthesis of fungi cell membranes. Literature suggests that the recurrence of fungal infection can be avoided by altering the pH of the site of infection. Studies have also suggested that fungi thrive by altering skin pH to be slightly acidic, i.e., pH 3-5. The current study is aimed to design, develop, characterize, and evaluate an alkaline pH-based antifungal spray solution for antifungal effects. Luliconazole was used as an antifungal agent and an alkaline spray was formulated for topical application by using Eudragit RS 100, propylene glycol (PG), water, sodium bicarbonate, and ethanol via solubilization method. Herein, sodium bicarbonate was used as an alkalizing agent. Based on DSC, FTIR, PXRD, scanning electron microscopy (SEM), and rheological analysis outcomes, the drug (luliconazole) and polymer were found to be compatible. F-14 formulation containing 22% Eudragit RS 100 (ERS), 1.5% PG, and 0.25% sodium bicarbonate was optimized by adopting the quality by design approach by using design of experiment software. The viscosity, pH, drying time, volume of solution post spraying, and spray angle were, 14.99 ± 0.21 cp, 8 pH, 60 s, 0.25 mL ± 0.05 mL, and 80 ± 2, respectively. In vitro drug diffusion studies and in vitro antifungal trials against Candida albicans revealed 98.0 ± 0.2% drug diffusion with a zone of inhibition of 9 ± 0.12 mm. The findings of the optimized luliconazole topical film-forming solution were satisfactory, it was compatible with human skin, and depicted sustained drug release that suggests promising applicability in facilitated topical antifungal treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA