Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37915241

RESUMO

Since the discovery of laser-induced graphite/graphene, there has been a notable surge of scientific interest in advancing diverse methodologies for their synthesis and applications. This study focuses on the utilization of a pulsed Nd:YAG laser to achieve graphitization of polydopamine (PDA) deposited on the surface of titania nanotubes. The partial graphitization is corroborated through Raman and XPS spectroscopies and supported by water contact angle, nanomechanical, and electrochemical measurements. Reactive molecular dynamics simulations confirm the possibility of graphitization in the nanosecond time scale with the evolution of NH3, H2O, and CO2 gases. A thorough exploration of the lasing parameter space (wavelength, pulse energy, and number of pulses) was conducted with the aim of improving either electrochemical activity or photocurrent generation. Whereas the 532 nm laser pulses interacted mostly with the PDA coating, the 365 nm pulses were absorbed by both PDA and the substrate nanotubes, leading to a higher graphitization degree. The majority of the photocurrent and quantum efficiency enhancement is observed in the visible light between 400 and 550 nm. The proposed composite is applied as a photoelectrochemical (PEC) sensor of serotonin in nanomolar concentrations. Because of the suppressed recombination and facilitated charge transfer caused by the laser graphitization, the proposed composite exhibits significantly enhanced PEC performance. In the sensing application, it showed superior sensitivity and a limit of detection competitive with nonprecious metal materials.

2.
Materials (Basel) ; 16(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37763416

RESUMO

Open-cell spray polyurethane foams are widely used as highly efficient thermal insulation materials with vapor permeability and soundproofing properties. Unfortunately, for the production of commercial foams, mainly non-renewable petrochemical raw materials are used. The aim of this study was to determine the possibility of completely replacing petrochemical polyols (the main raw material used in the synthesis of polyurethanes, alongside isocyanates) with bio-polyols obtained from used cooking oils, classified as waste materials. The research consisted of three stages: the synthesis of bio-polyols, the development of polyurethane foam systems under laboratory conditions, and the testing of developed polyurethane spray systems under industrial conditions. The synthesis of the bio-polyols was carried out by using two different methods: a one-step transesterification process using triethanolamine and a two-step process of epoxidation and opening oxirane rings with diethylene glycol. The obtained bio-polyols were analyzed using gel chromatography and nuclear magnetic resonance spectroscopy. The developed polyurethane foam formulations included two types of fire retardants: halogenated tris(1-chloro-2-propyl) phosphate (TCPP) and halogen-free triethyl phosphate (TEP). In the formulations of polyurethane systems, reactive amine catalysts were employed, which become incorporated into the polymer matrix during foaming, significantly reducing their emission after application. The foams were manufactured on both a laboratory and industrial scale using high-pressure spray machines under conditions recommended by commercial system manufacturers: spray pressure 80-100 bar, component temperature 45-52 °C, and component volumetric ratio 1:1. The open-cell foams had apparent densities 14-21.5 kg/m3, thermal conductivity coefficients 35-38 mW/m∙K, closed-cell contents <5%, water vapor diffusion resistance factors (µ) <6, and limiting oxygen indexes 21.3-21.5%. The properties of the obtained foams were comparable to commercial materials. The developed polyurethane spray systems can be used as thermal insulation materials for insulating interior walls, attics, and ceilings.

3.
Materials (Basel) ; 16(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37109868

RESUMO

Renewable materials are materials that are replenished naturally and can be used again and again. These materials include things such as bamboo, cork, hemp, and recycled plastic. The use of renewable components helps to reduce the dependence on petrochemical resources and reduce waste. Adopting these materials in various industries such as construction, packaging, and textiles can lead to a more sustainable future and decrease the carbon footprint. The presented research describes new porous polyurethane biocomposites based on used cooking oil polyol (50 per hundred polyol-php) modified with cork (3, 6, 9, and 12 php). The research described here demonstrated that it is possible to replace some petrochemical raw materials with raw materials of renewable origin. This was achieved by replacing one of the petrochemical components used for the synthesis of the polyurethane matrix with a waste vegetable oil component. The modified foams were analyzed in terms of their apparent density, coefficient of thermal conductivity, compressive strength at 10% of deformation, brittleness, short-term water absorption, thermal stability, and water vapor permeability, while their morphology was examined using scanning electron microscopy and the content of closed cells. After the successful introduction of a bio-filler, it was found that the thermal insulation properties of the modified biomaterials were comparable to those of the reference material. It was concluded that it is possible to replace some petrochemical raw materials with raw materials of renewable origin.

4.
Materials (Basel) ; 15(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36556696

RESUMO

We report on the development of open-cell polyurethane foams based on bio-polyols from vegetable oils: hemp seed oil, oilseed radish oil, rapeseed oil and used rapeseed cooking oil. The crude oils were pressed from seeds and subjected to an optimal solvent-free epoxidation process. Bio-polyols were obtained by a ring-opening reaction using diethylene glycol and tetrafluoroboric acid as catalysts. The resultant foams were analysed in terms of their apparent density, thermal conductivity coefficient, mechanical strength, closed cell content, short-term water absorption and water vapour permeability, while their morphology was examined using scanning electron microscopy. It was found that regardless of the properties of the oils, especially the content of unsaturated bonds, it was possible to obtain bio-polyols with very similar properties. The foams were characterized by apparent densities ranging from 11.2 to 12.1 kg/m3, thermal conductivity of <39 mW/m∙K, open cell contents of >97% and high water vapour permeability.

5.
Polymers (Basel) ; 14(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36433094

RESUMO

This article presents the results of research on obtaining new polyurethane (PUR) foams modified with thermally expanded vermiculite. The filler was added in amount of 3 wt.% up to 15 wt.%. The additionally applied procedure of immersion the non-organic filler in H2O2 was performed to increase the exfoliation effect of thermally treated mineral and additional oxidation the surfaces. The effect of fillers on foaming process, cell structure, thermal insulation, apparent density, compressive strength, thermal properties, and flammability are assessed. The foaming process of PUR foams modified with vermiculite was comparable for all systems, regardless of the content of the filler. A slight increase in reactivity was observed, confirmed by a faster decrease in dielectric polarization for the system with modified vermiculite by H2O2. The modification of the reference system with the vermiculite increased the content of closed cells from 76% to 91% for the foams with the highest vermiculite content. Coefficient of thermal conductivity of reference foam and foams modified with vermiculite was in the range 24-26 mW/mK. The use of vermiculite up to 15 wt.% did not influence significantly on mechanical properties and flammability, which from an economic point of view is important because it is possible to reduce the cost of materials by introducing a cheap filler without deteriorating their properties.

6.
Materials (Basel) ; 15(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36363400

RESUMO

The search for new sources of raw materials that can be used in the synthesis of polyurethanes and other polymer groups is extremely important. Currently, according to the principles of green chemistry and a circular economy, waste materials with a high reuse potential are being sought. This article presents a way of obtaining used-cooking-oil-based compounds capable of participating in the reaction of polyurethane creation. The transesterification reaction can be carried out using a variety of homo- and heterogeneous acid or base catalysts. Here, we looked at the impact of selected catalysts on the course of transesterification reactions, the composition of the post-reaction mixture and the possibility of using the products in polyurethane foam synthesis. The raw materials and the products were analyzed by means of gel permeation chromatography, FTIR spectroscopy and 1H NMR. The polyurethane foam formation process was analyzed using a FOAMAT® apparatus.

7.
Materials (Basel) ; 15(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36079468

RESUMO

This article presents an ecological approach based on climate neutrality to the synthesis of open-cell polyurethane foams with modified used cooking rapeseed oils. Water was used as a chemical blowing agent in the amount of 20-28 wt.% in relation to the weight of the bio-polyol. The influence of water on the physical and mechanical properties of the synthesized foams was investigated. The resultant porous materials were tested for the content of closed cells, cell structure, apparent density, thermal conductivity, compressive strength, and dimensional stability. It was found that the apparent density decreased in the range of 11-13 kg/m3 when the amount of the foaming agent was increased. In the next step, a foam with a water content of 22% was selected as having the most favorable physico-mechanical properties among all the foams with various water contents. The isocyanate index of the selected foam was then changed from 0.6 to 1.1 and it was observed that the compressive strength increased by an average of 10 kPa. The thermal conductivity coefficients of the final materials with different water contents and isocyanate indices were comparable and in the range of 40-43 mW/m·K.

8.
Materials (Basel) ; 15(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35629497

RESUMO

This article compares the properties of closed-cell PUR bio-foams produced on a laboratory scale and on an industrial scale. In the formulation used, the polyol premix contained 40 wt.% of a bio-polyol based on rapeseed oil. Selected useful properties of the foams obtained on the two scales and the use of one-step and spraying methods were compared. In the case of the spraying method, the experimental system was compared to a commercial one. Given the possibility of applying the bio-foams in insulation systems for cryogenic and liquefied natural gas (LNG) applications, a compressive strength analysis of the foams was carried out at room temperature as well as at -196 °C. It was found that the foams modified with the bio-polyol were characterized by a higher compressive strength at low temperatures than commercial foams based on a petrochemical polyol.

9.
Materials (Basel) ; 13(24)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322670

RESUMO

The main goal of this work was to evaluate the thermal insulation and sound absorption properties of open-cell rigid polyurethane foams synthesized with different contents of cooking oil-based polyol. The content of the applied bio-polyol as well as flame retardant (triethyl phosphate) in the foam formulation had a significant influence on the cellular structures of the materials. The open-cell polyurethane foams were characterized by apparent densities in the range 16-30 kg/m3. The sound absorption coefficients of the polyurethanes with various contents of bio-polyol were determined using the standing wave method (Kundt's tube) in the frequency range of 100-6300 Hz. The effect of the content of the bio-polyol and flame retardant on the coefficient of thermal conductivity (at average temperatures of 0, 10 and 20 °C) as well as the compressive strength (at 20 and -10 °C) was analyzed. Different trends were observed in terms of the thermal insulation properties and sound absorption ability of the open-cell polyurethanes due to the addition of bio-polyol. In conclusion, it is necessary to use systems containing both petrochemical and bio-based raw materials.

10.
Materials (Basel) ; 13(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266256

RESUMO

This work presents the cell structure and selected properties of polyurethane (PUR) foams, based on two types of hydroxylated used cooking oil and additionally modified with three different flame retardants. Bio-polyols from municipal waste oil with different chemical structures were obtained by transesterification with triethanolamine (UCO_TEA) and diethylene glycol (UCO_DEG). Next, these bio-polyols were used to prepare open-cell polyurethane foams of very low apparent densities for thermal insulation applications. In order to obtain foams with reduced flammability, the PUR systems were modified with different amounts (10-30 parts per hundred polyol by weight-php) of flame retardants: TCPP (tris(1-chloro-2-propyl)phosphate), TEP (triethyl phosphate), and DMPP (dimethyl propylphosphonate). The flame retardants caused a decrease of the PUR formulations reactivity. The apparent densities of all the foams were comparable in the range 12-15 kg/m3. The lowest coefficients of thermal conductivity were measured for the open-cell PUR foams modified with DMPP. The lowest values of heat release rate were found for the foams based on the UCO_TEA and UCO_DEG bio-polyols that were modified with 30 php of DMPP.

11.
Materials (Basel) ; 13(22)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207702

RESUMO

In order to create greener polyurethane (PUR) foams, modified used cooking oils (UCO) were applied as starting resources for the synthesis of bio-polyols. The bio-polyols were produced using transesterification of UCO with diethylene glycol (UCO_DEG) and triethanolamine (UCO_TEA). Next, open-cell PUR foams were synthesized by replacing 20, 40, 60, 80 and 100% of the petrochemical polyol with the bio-polyol UCO_DEG or UCO_TEA. It was observed that an increasing bio-polyol content (up to 60%) led to an increase of the closed cell content. However, a further increase in the bio-polyol content up to 100% resulted in foam cell opening. The bio-foams obtained in the experiment had an apparent density of 13-18 kg/m3. The coefficient of thermal conductivity was determined at three different average temperatures: 10, 0 and -10 °C. The PUR bio-foams modified with bio-polyol UCO_TEA had lower values of thermal conductivity, regardless of the average temperature (35.99-39.57 mW/m·K) than the foams modified with bio-polyol UCO_DEG (36.95-43.78 mW/m·K). The compressive strength of most of the bio-foams was characterized by a higher value than the compressive strength of the reference material (without bio-polyol). Finally, it was observed that the bio-materials exhibited dimensional stability at 70 °C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA