Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomedicines ; 9(3)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33800045

RESUMO

Despite their distinct clinical manifestation, frontal fibrosing alopecia (FFA) and lichen planopilaris (LPP) display similar histopathologic features. Aberrant innate immune responses to endogenous or exogenous triggers have been discussed as factors that could drive inflammatory cascades and the collapse of the stem cell niche. In this exploratory study, we investigate the bacterial composition of scalp skin and plucked hair follicles (HF) of patients with FFA, LPP and alopecia areata circumscripta (AAc), as well as healthy individuals, in relation to cellular infiltrates and the expression of defense mediators. The most abundant genus in lesional and non-lesional HFs of LPP and FFA patients was Staphylococcus, while Lawsonella dominated in healthy individuals and in AAc patients. We observed statistically significant differences in the ratio of Firmicutes to Actinobacteria between healthy scalp, lesional, and non-lesional sites of FFA and LPP patients. This marked dysbiosis in FFA and LPP in compartments close to the bulge was associated with increased HßD1 and HßD2 expression along the HFs from lesional sites, while IL-17A was increased in lesional HF from AAc patients. The data encourage further studies on how exogenous factors and molecular interactions across the HF epithelium could contribute to disease onset and propagation.

2.
Biomedicines ; 9(3)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652789

RESUMO

Human skin and hair follicles are recognized sites of microbial colonization. These microbiota help regulate host immune mechanisms via an interplay between microbes and immune cells, influencing homeostasis and inflammation. Bacteria affect immune responses by controlling the local inflammatory milieu, the breakdown of which can result in chronic inflammatory disorders. Follicular microbiome shifts described in some inflammatory cutaneous diseases suggest a link between their development or perpetuation and dysbiosis. Though the hair follicle infundibulum is an area of intense immunological interactions, bulb and bulge regions represent immune-privileged niches. Immune privilege maintenance seems essential for hair growth and regeneration, as collapse and inflammation characterize inflammatory hair disorders like alopecia areata and primary cicatricial alopecia. Current research largely focuses on immunological aberrations. However, studies suggest that external stimuli and interactions across the follicular epithelium can have profound effects on the local immune system, homeostasis, and cycling. Herein, we review hair follicle bacterial colonization, its possible effects on the underlying tissue, and links to the pathogenesis of alopecia, beyond the pure investigation of specific species abundance. As skin microbiology enters the metagenomics era, multi-dimensional approaches will enable a new level of investigations on the effects of microorganisms and metabolism on host tissue.

3.
Eur J Dermatol ; 31(1): 22-31, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33586659

RESUMO

BACKGROUND: The upper follicular compartment, a well-known reservoir of cutaneous microbiota, constitutes a space for intensive cross-barrier dialogue. The lower follicle comprises the bulb and bulge, structures with relative immune-privileged status, crucial for physiological cycling, and widely considered to be microbial-free. OBJECTIVES: Following our initial immunohistochemical screening for regulatory cytokines and defensin expression in anagen hair follicles, we aimed to confirm our results with a follow-up ELISA investigation. We postulated that exposure to microbial components may trigger expression, and thus opted to investigate microbial presence in this area. MATERIALS & METHODS: We performed immunohistochemical staining for selected cytokines and antimicrobial peptides, and Gram and Giemsa staining on tissue sections from healthy individuals. Based on ELISA analyses, we confirmed a marked presence of IL-17A- and HBD2 in infrainfundibular compartments from plucked anagen hair follicles of 12 individuals (six females, six males; frontal and occipital scalp sites). 16S rRNA sequencing on microbial DNA extracted from lower follicles, as well as fluorescence in situ hybridization (FISH) were applied to explore bacterial presence in the infrainfundibular compartments. RESULTS: 16S rRNA sequencing yielded reproducible data of bacterial presence in infrainfundibular compartments of plucked scalp follicles; Lawsonella clevelandensis, Staphylococcaceae and Propionibacteriaceae were the most abundant bacteria. Also, FISH revealed biofilm structures formed by Cutibacterium acnes (formerly Propionibacterium acnes) and Staphylococcus sp. below the infundibulum. CONCLUSION: As the skin microbiome largely influences the local immune system, the presence of bacteria in proximity to follicular immune-privileged areas may be of relevance to hair cycling in health and disease.


Assuntos
DNA Bacteriano/análise , Folículo Piloso/química , Proteínas Citotóxicas Formadoras de Poros/análise , Adulto , Feminino , Humanos , Masculino , Couro Cabeludo , Adulto Jovem
4.
Exp Dermatol ; 29(3): 286-294, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30974503

RESUMO

The skin surface microbiome and its role in skin diseases have received increasing attention over the past years. Beyond, there is evidence for a continuous exchange with the cutaneous immune system in healthy skin, where hair follicles (HFs) provide unique anatomical niches. Especially, scalp HFs form large tubular invaginations, which extend deeply into the skin and harbour a variety of microorganisms. The distinct immunology of HFs with enhanced immune cell trafficking in superficial compartments in juxtaposition to immune-privileged sites crucial for hair follicle cycling and regeneration makes this organ a highly susceptible structure. Depending on composition and penetration depth, microbiota may cause typical infections, but may also contribute to pro-inflammatory environment in chronic inflammatory scalp diseases. Involvement in hair cycle regulation and immune cell maturation has been postulated. Herein, we review recent insights in hair follicle microbiome, immunology and penetration research and discuss clinical implications for scalp health and disease.


Assuntos
Alopecia em Áreas/metabolismo , Folículo Piloso/metabolismo , Microbiota , Couro Cabeludo/imunologia , Couro Cabeludo/metabolismo , Couro Cabeludo/fisiologia , Alopecia , Animais , Dermatite Seborreica/metabolismo , Cabelo , Folículo Piloso/imunologia , Folículo Piloso/fisiologia , Humanos , Sistema Imunitário , Inflamação , Queratinócitos/citologia , Camundongos , Psoríase , Couro Cabeludo/patologia , Pele/imunologia , Pele/metabolismo , Dermatopatias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA