Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Drug Dev Ind Pharm ; 50(7): 706-719, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39115285

RESUMO

OBJECTIVE: In the current research, 6-gingerol (GA)-loaded nanofiber drug delivery system were developed, and their potential usage in wound healing was evaluated. SIGNIFICANCE: This study investigates the effectiveness of nanofibrous membranes composed of sodium alginate (SA), poly(vinyl alcohol) (PVA), and 6-gingerol (GA) as delivery systems for anti-inflammatory agents in the context of wound dressings. METHODS: GA-loaded SA/PVA nanofiber was prepared using electrospinning. In vitro characterization of this nanofiber included the examination of comprehensive in vitro characterization, anti-inflammatory and antioxidant activities, cytotoxicity, a scratch tes and in vivo skin test. RESULTS: GA was extracted from Zingiber officinale, and its successful isolation was confirmed through analyses such as H-NMR, C-NMR. Then GA was electrospuned into the SA/PVA nanofibers, and scanning electron microscopy (SEM) imaging revealed that the fiber diameters of the formulations ranged between 148 nm and 176 nm. Anti-inflammatory and antioxidant studies demonstrated that the effectiveness of GA increased with higher doses; however, this increase was accompanied by decreased cell viability. In vitro release studies revealed that GA exhibited a burst release within the first 8 h, followed by a controlled release, reaching completion within 24 h. Within the scope of in vitro release kinetics, release data are mathematically compatible with the Weibull model with high correlation. The scratch test results indicated that TB2 (%1 GA) promoted epithelialization. Furthermore, it was determined that TB2 (%1 GA) did not cause any irritation. CONCLUSIONS: As a result, TB2 shows promise as a formulation for wound dressings, offering potential benefits in the field of wound care.


Assuntos
Alginatos , Antioxidantes , Catecóis , Álcoois Graxos , Nanofibras , Álcool de Polivinil , Cicatrização , Álcoois Graxos/química , Nanofibras/química , Cicatrização/efeitos dos fármacos , Catecóis/química , Catecóis/farmacologia , Catecóis/administração & dosagem , Alginatos/química , Animais , Álcool de Polivinil/química , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Antioxidantes/química , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Humanos , Zingiber officinale/química , Sistemas de Liberação de Medicamentos/métodos , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Bandagens , Ratos , Polímeros/química , Masculino , Camundongos
2.
J Sci Food Agric ; 104(10): 5846-5859, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38385802

RESUMO

BACKGROUND: Allergic conjunctivitis is one of the most common eye disorders. Different drugs are used for its treatment. Hesperidin is an active substance isolated from Citrus sinensis L. (Rutaceae) fruit peels, with known anti-inflammatory activity but low solubility. It was complexed with cyclodextrin and encapsulated in situ gel to extend its duration in the eye. RESULTS: The optimized formulation comprised 1% hesperidin, 1.5% hydroxyethyl cellulose, and 16% poloxamer 407. The viscosity at 25 °C was 492 ± 82 cP, and at 35 °C it was 8875 ± 248 cP, the pH was 7.01 ± 0.03, gelation temperature was 34 ± 1.3 °C, and gelation time was 33 ± 1.2 s. There was a 66% in vitro release in the initial 2 h, with a burst effect. A lipoxygenase (LOX) inhibition test determined that hesperidin was active at high doses on leukotyrens seen in the body in allergic diseases. In cell-culture studies, the hesperidin cyclodextrin complex loaded in situ gel, BRN9-CD (poloxamer 16%, hydroxy ethyl cellulose (HEC) 1.5%), enhanced cell viability in comparison with the hesperidin solution. It was determined that BRN9-CD did not cause any irritation in the ocular tissues in the Draize test. CONCLUSION: The findings of this study demonstrate the potential of the in situ gel formulation of hesperidin in terms of ease of application and residence time on the ocular surface. Due to its notable LOX inhibition activity and positive outcomes in the in vivo Draize test, it appears promising for incorporation into pharmaceutical formulations. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Sistemas de Liberação de Medicamentos , Géis , Hesperidina , Hesperidina/química , Hesperidina/farmacologia , Hesperidina/análogos & derivados , Géis/química , Animais , Humanos , Citrus sinensis/química , Conjuntivite Alérgica/tratamento farmacológico , Composição de Medicamentos , Viscosidade , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica
3.
Drug Dev Ind Pharm ; 49(9): 601-615, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37788164

RESUMO

OBJECTIVE: In the current research, lornoxicam-loaded in situ gels were developed, and their potential usage in ocular inflammation was evaluated. SIGNIFICANCE: Lornoxicam cyclodextrin complex prepared with hydroxypropyl methylcellulose and poloxamer P407 because of the low viscosity of in situ gels to provide easy application. However, washing and removing it from the ocular surface becomes difficult due to the gelation formation with heat. METHODS: A three-level factorial experimental design was used to evaluate the effects of poloxamer 407 concentration, polymer type, and polymer concentration on viscosity, pH, gelation capacity, gelation time, and gelation temperature, which were considered the optimal indicators of lornoxicam-containing formulations. RESULTS: As a result of the three-level factorial experimental design, the optimized formulation contained 15 (%w/v) poloxamer 407 and 1 (%w/v) hydroxypropyl methylcellulose. The optimize formulation viscosity 25 °C = 504 ± 49cP, viscosity 35 °C = 11247 ± 214cP, pH = 6.80 ± 0.01, gelation temprature = 35 ± 0.2 °C, and gelation time= 34 ± 0.2 s was obtained. In the in vitro release studies, 68% of lornoxicam was released with a burst effect in the first three hours; then, the release continued for eight hours with controlled release. Release kinetics of the formulations were modeled mathematically, and it was found to be compatible with the Korsemeyer-Peppas and Weibull models. In cell culture studies, cell viability at 100 µg/mL was 83% and 96% for NL6 and NL6-CD, respectively. In Draize's in vivo test, no negative conditions occurred in rats. CONCLUSIONS: Therefore, the NL6-CD formulation has the potential to be a favorable option for treating ocular inflammation.


Assuntos
Temperatura Alta , Poloxâmero , Ratos , Animais , Derivados da Hipromelose , Projetos de Pesquisa , Géis , Temperatura , Inflamação , Viscosidade
4.
J Ocul Pharmacol Ther ; 38(6): 412-423, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35675672

RESUMO

Objective: In the treatment of severe cases of bacterial keratitis, conventional eye drops containing antibiotics should be applied daily and very frequently. The aim of this study is to develop low-dose high-effect formulations with the prepared nanostructured lipid carrier (NLC) formulations to reduce antibiotic resistance and increase patient compliance. Methods: NLC formulations were loaded with besifloxacin HCl (BHL) and the besifloxacin HCl: sulfobutyl ether beta-cyclodextrin (SBE-CD) complex. Positive charge was gained with chitosan, and corneal permeation and resolubility were increased with SBE-CD. In vitro characterization studies, permeability studies, and cytotoxicity and ex vivo transport studies were carried out. Results: In this study, it was found that SBE-CD increased BHL's solubility by 8-fold based on phase solubility studies. The optimized NLCs were small in size (13.63-16.09 nm) with a low polydispersity index (0.107-0.181) and adequate BHL drug loading efficiency. In vitro release studies showed that formulations were released approximately for 8 h and at levels over the minimum inhibitory concentration of Pseudomonas aeruginosa and Staphylococcus aureus. NLC formulations had a better corneal permeation rate than the marketed product during 6 h of ex vivo studies. Conclusions: According to in vitro and ex vivo data, it was determined that the most favorable NLC formulation was the formulation containing BHL/SBE-CD that was covered with chitosan. It has the highest drug loading capacity and one of the highest ex vivo corneal passage levels, along with desired drug release. The formulation containing BHL/SBE-CD and chitosan can be a potential alternative for the treatment of bacterial keratitis.


Assuntos
Quitosana , Ceratite , Nanoestruturas , Azepinas , Portadores de Fármacos , Fluoroquinolonas , Humanos , Lipídeos , Tamanho da Partícula
5.
J Ocul Pharmacol Ther ; 38(6): 376-395, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35763406

RESUMO

Keratitis is a disease characterized by inflammation of the cornea caused by different pathogens. It can cause serious visual morbidity if not treated quickly. Depending on the pathogen causing keratitis, eye drops containing antibacterial, antifungal, or antiviral agents such as besiloxacin, moxifloxacin, ofloxacin, voriconazol, econazole, fluconazole, and acyclovir are used, and these drops need to be applied frequently due to their low bioavailability. Studies are carried out on formulations with extended residence time in the cornea and increased permeability. These formulations include various new drug delivery systems such as inserts, nanoparticles, liposomes, niosomes, cubosomes, microemulsions, in situ gels, contact lenses, nanostructured lipid carriers, carbon quantum dots, and microneedles. Ex vivo and in vivo studies with these formulations have shown that the residence time of the active substances in the cornea is prolonged, and their ocular bioavailability is increased. In addition, in vivo studies have shown that these formulations successfully treat keratitis. However, it has been observed that fluoroquinolones are used in most of the studies; similar drug delivery systems are generally preferred for antifungal drugs, and studies for viral and acanthameba keratitis are limited. There is a need for new studies on different types of keratitis and different drug active substances. At the same time, proving the efficacy of drug delivery systems, which give promising results in in vivo animal models, with clinical studies is of great importance for progress in the treatment of keratitis.


Assuntos
Ceratite , Nanopartículas , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Córnea , Sistemas de Liberação de Medicamentos , Ceratite/tratamento farmacológico , Ceratite/microbiologia , Lipossomos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA