Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 745: 140639, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32758758

RESUMO

The Deepwater Horizon (DWH) oil spill marked the largest environmental oil spill in human history, where it was estimated a large amount of the polycyclic aromatic hydrocarbons (PAHs) were released with crude oil into the environment. In this study, common PAH compounds were quantitatively determined in crude oil from the DWH spill by gas chromatography-mass spectroscopy (GC-MS). Twelve PAH compounds were identified and quantified from a 100× dilution of DWH crude oil: naphthalene (7800 ng/mL), acenaphthylene (590 ng/mL), acenaphtehen (540 ng/mL), fluorene (2550 ng/mL), phenanthrene (2910 ng/mL), anthracene (840 ng/mL), fluoranthene (490 ng/mL), pyrene (290 ng/mL), benzo(k) fluoranthene (1050 ng/mL), benzo(b)fluoranthene (1360 ng/mL), dibenz(a,h)anthracene (2560 ng/mL), and benzo(g, h, i) perylene (630 ng/mL). Toxicity assays using the nematode, Caenorhabditis elegans (C. elegans), indicated a single PAH compound naphthalene, exposure increased C. elegans germ cell apoptosis which may adversely affect progeny reproduction. The number of apoptotic germ cells significantly increased from 1.4 to 2.5 when worms were treated with 10 µg/mL of naphthalene and from 1.3 to 2.5 and 3.5 cells in presence of 1 µg/mL and 5 µg/mL of benzo(a)pyrene, respectively. Five CYP450 genes (CYP14A3, CYP35A1, CYP35A2, CYP35A5, and CYP35C1) were significantly upregulated following 500× dilution of dispersed crude oil exposure (p < 0.05). These results suggest that CYP450s may play a role in bioactivation of PAHs in crude oil, resulting in DNA damage related germ cell apoptosis.


Assuntos
Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Animais , Apoptose , Caenorhabditis elegans , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Células Germinativas , Humanos , Regulação para Cima
2.
Toxicol Sci ; 156(2): 336-343, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003440

RESUMO

Effects of ZnO NPs and ionic Zn on germline apoptosis and the regulation of genes in the apoptosis pathway were investigated in vivo using the model organism Caenorhabditis elegans.Age synchronized Bristol N2 worms were exposed to ZnO NPs and ZnCl2 at concentrations of 6.14 × 10-1, 61.4, and 614 µM form larval stage 1 (L1) to early adulthood. Possible ZnO nanoparticles were observed under the worm cuticle and also in the gonadal region by transmission electron microscopy (TEM). ZnO NPs and ZnCl2 both significantly increased the number of apoptotic cells as compared with controls in the 61.4 and 614 µM treatment groups (P < .05). However, ZnO NPs induced more apoptotic cells in the 61.4 µM treatment than ZnCl2 (P < .05), suggesting ZnO NP is more potent in inducing apoptosis at specific exposure concentration. Findings using the MD701 (bcIs39 [(lim-7)ced-1p::GFP + lin-15(+)]) strain further confirmed the observations in N2 strain. Genes involved in the apoptosis pathway (ced-13, ced-3, ced-4, ced-9, cep-1, dpl-1, efl-1, efl-2, egl-1, egl-38, lin-35, pax-2, and sir-2.1) were in general upregulated in response to ZnO NP exposure. The cep-1/p53 gene was up-regulated in gene expression assay. In the cep-1 loss of function mutant, no significant increase in apoptosis was observed. Therefore, the increased apoptosis resulting from ZnO NPs exposure is likely cep-1/p53 dependent. This study provides evidence that ZnO nanoparticles affect germ cell apoptotic machinery as a potential mechanism of reproductive toxicity.


Assuntos
Apoptose/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Cloretos/farmacologia , Células Germinativas/efeitos dos fármacos , Nanopartículas Metálicas , Compostos de Zinco/farmacologia , Óxido de Zinco/farmacologia , Animais , Apoptose/genética , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética
3.
Neurotoxicology ; 47: 27-36, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25530353

RESUMO

Nicotine, the major psychoactive compound in tobacco, targets nicotinic acetylcholine receptors (nAChRs) and results in drug dependence. The nematode Caenorhabditis elegans' (C. elegans) genome encodes conserved and extensive nicotinic receptor subunits, representing a useful system to investigate nicotine-induced nAChR expressions in the context of drug dependence. However, the in vivo expression pattern of nAChR genes under chronic nicotine exposure has not been fully investigated. To define the role of nAChR genes involved in nicotine-induced locomotion changes and the development of tolerance to these effects, we characterized the locomotion behavior combining the use of two systems: the Worm Tracker hardware and the WormLab software. Our results indicate that the combined system is an advantageous alternative to define drug-dependent locomotion behavior in C. elegans. Chronic (24-h dosing) nicotine exposure at 6.17 and 61.7µM induced nicotine-dependent behaviors, including drug stimulation, tolerance/adaption, and withdrawal responses. Specifically, the movement speed of naïve worms on nicotine-containing environments was significantly higher than on nicotine-free environments, suggesting locomotion stimulation by nicotine. In contrast, the 24-h 6.17µM nicotine-treated worms exhibited significantly higher speeds on nicotine-free plates than on nicotine-containing plates. Furthermore significantly increased locomotion behavior during nicotine cessation was observed in worms treated with a higher nicotine concentration of 61.7µM. The relatively low locomotion speed of nicotine-treated worms on nicotine-containing environments also indicates adaption/tolerance of worms to nicotine following chronic nicotine exposure. In addition, this study provides useful information regarding the comprehensive in vivo expression profile of the 28 "core" nAChRs following different dosages of chronic nicotine treatments. Eleven genes (lev-1, acr-6, acr-7, acr-11, lev-8, acr-14, acr-16, acr-20, acr-21, ric-3, and unc-29) were significantly up-regulated following 61.7µM nicotine treatment, in which worms showed significantly increased locomotion behavior. This study provides insights into the linkage between nicotine-induced locomotion behavior and the regulation of nicotinic acetylcholine receptors.


Assuntos
Caenorhabditis elegans/metabolismo , Nicotina/toxicidade , Agonistas Nicotínicos/toxicidade , Receptores Nicotínicos/metabolismo , Tabagismo/metabolismo , Animais , Caenorhabditis elegans/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem
4.
Reprod Toxicol ; 40: 69-75, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23735997

RESUMO

Effects and mechanisms of chronic exposure to low levels of nicotine is an area fundamentally important however less investigated. We employed the model organism Caenorhabditis elegans to investigate potential impacts of chronic (24h) and low nicotine exposure (6.17-194.5 µM) on stimulus-response, reproduction, and gene expressions. Nicotine significantly affects the organism's response to touch stimulus (p=0.031), which follows a dose-dependent pattern. Chronic nicotine exposure promotes early egg-laying events and slightly increased egg productions during the first 72 h of adulthood. The expressions of 10 (egl-10, egl-44, hlh-14, ric-3, unc-103, unc-50, unc-68, sod-1, oxi-1, and old-1) out of 18 selected genes were affected significantly. Other tested genes were cat-4, egl-19, egl-47, egl-5, lin-39, unc-43, pink-1, and age-1. Changes in gene expression were more evident at low dosages than at relatively high levels. Genes implicated in reproduction, cholinergic signaling, and stress response were regulated by nicotine, suggesting widespread physiological impacts of nicotine.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Nicotina/toxicidade , Agonistas Nicotínicos/toxicidade , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Oviparidade/efeitos dos fármacos , Reprodução/efeitos dos fármacos
5.
Arch Toxicol ; 87(2): 371-82, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22990136

RESUMO

The economic, environmental, and human health impacts of the deepwater horizon (DWH) oil spill have been of significant concern in the general public and among scientists. This study employs parallel experiments to test the effects of crude oil from the DWH oil well, chemical dispersant Corexit 9500A, and dispersant-oil mixture on growth and reproduction in the model organism Caenorhabditis elegans. Both the crude oil and the dispersant significantly inhibited the reproduction of C. elegans. Dose-dependent inhibitions of hatched larvae production were observed in worms exposed to both crude oil and dispersant. Importantly, the chemical dispersant Corexit 9500A potentiated crude oil effects; dispersant-oil mixture induced more significant effects than oil or dispersant-alone exposures. While oil-alone exposure and dispersant-alone exposure have none to moderate inhibitory effects on hatched larvae production, respectively, the mixture of dispersant and oil induced much more significant inhibition of offspring production. The production of hatched larvae was almost completely inhibited by several high concentrations of the dispersant-oil mixture. This suggests a sensitive bioassay for future investigation of oil/dispersant impacts on organisms. We also investigated the effects of crude oil/dispersant exposure at the molecular level by measuring the expressions of 31 functional genes. Results showed that the dispersant and the dispersant-oil mixture induced aberrant expressions of 12 protein-coding genes (cat-4, trxr-2, sdhb-1, lev-8, lin-39, unc-115, prdx-3, sod-1, acr-16, ric-3, unc-68, and acr-8). These 12 genes are associated with a variety of biological processes, including egg-laying, oxidative stress, muscle contraction, and neurological functions. In summary, the toxicity potentiating effect of chemical dispersant must be taken into consideration in future crude oil cleanup applications.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Crescimento/efeitos dos fármacos , Lipídeos/toxicidade , Petróleo/toxicidade , Reprodução/efeitos dos fármacos , Tensoativos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Caenorhabditis elegans/fisiologia , Sinergismo Farmacológico , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA