Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
3.
Hypertension ; 81(4): 691-701, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38059359

RESUMO

ET (endothelin) is a powerful vasoconstrictor 21-amino acid peptide present in many tissues, which exerts many physiological functions across the body and participates as a mediator in many pathological conditions. ETs exert their effects through ETA and ETB receptors, which can be blocked by selective receptor antagonists. ETs were shown to play important roles among others, in systemic hypertension, particularly when resistant or difficult to control, and in pulmonary hypertension, atherosclerosis, cardiac hypertrophy, subarachnoid hemorrhage, chronic kidney disease, diabetic cardiovascular disease, scleroderma, some cancers, etc. To date, ET antagonists are only approved for the treatment of primary pulmonary hypertension and recently for IgA nephropathy and used in the treatment of digital ulcers in scleroderma. However, they may soon be approved for the treatment of patients with resistant hypertension and different types of nephropathy. Here, the role of ETs is reviewed with a special emphasis on participation in and treatment of hypertension and chronic kidney disease.


Assuntos
Hipertensão Pulmonar , Hipertensão , Insuficiência Renal Crônica , Humanos , Antagonistas dos Receptores de Endotelina/uso terapêutico , Endotelinas , Hipertensão/tratamento farmacológico , Insuficiência Renal Crônica/complicações , Endotelina-1/fisiologia , Receptores de Endotelina , Receptor de Endotelina A
4.
Am J Physiol Renal Physiol ; 326(3): F438-F459, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38134232

RESUMO

Behavior and function of living systems are synchronized by the 24-h rotation of the Earth that guides physiology according to time of day. However, when behavior becomes misaligned from the light-dark cycle, such as in rotating shift work, jet lag, and even unusual eating patterns, adverse health consequences such as cardiovascular or cardiometabolic disease can arise. The discovery of cell-autonomous molecular clocks expanded interest in regulatory systems that control circadian physiology including within the kidney, where function varies along a 24-h cycle. Our understanding of the mechanisms for circadian control of physiology is in the early stages, and so the present review provides an overview of what is known and the many gaps in our current understanding. We include a particular focus on the impact of eating behaviors, especially meal timing. A better understanding of the mechanisms guiding circadian function of the kidney is expected to reveal new insights into causes and consequences of a wide range of disorders involving the kidney, including hypertension, obesity, and chronic kidney disease.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Ritmo Circadiano/fisiologia , Fotoperíodo , Comportamento Alimentar , Rim
5.
Biol Sex Differ ; 14(1): 70, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817272

RESUMO

INTRODUCTION: Current understanding of sodium (Na+) handling is based on studies done primarily in males. Contrary to the gradual increase in high salt (HS) induced natriuresis over 3-5 days in males, female Sprague Dawley (SD) rats have a robust natriuresis after 1 day of HS. Renal endothelin-1 (ET-1) signaling, through ET receptor A and B, is an important natriuretic pathway and was implicated in our previous dietary salt acclimation studies, however, the contribution of ET receptors to sex-differences in acclimation to dietary Na+ challenges has yet to be clarified. We hypothesized that ET receptors mediate the augmented natriuretic capacity of female rats in response to a HS diet. METHODS: To test our hypothesis, male and female SD rats were implanted with telemeters and randomly assigned to treatment with A-182086, a dual ETA and ETB receptor antagonist, or control. 24-h urine samples were collected and assessed for electrolytes and ET-1. Studies were performed on a normal salt (NS, 0.3% NaCl) diet and after challenging rats with HS (4% NaCl) diet for 1 day. RESULTS: We found that A-182086 increased blood pressure in male and female SD rats fed either diet. Importantly, A-182086 eliminated sex-differences in natriuresis on NS and HS. In particular, A-182086 promotes HS-induced natriuresis in male rats rather than attenuating the natriuretic capacity of females. Further, the sex-difference in urinary ET-1 excretion in NS-fed rats was eliminated by A-182086. CONCLUSION: In conclusion, ET receptors are crucial for mediating sex-difference in the natriuretic capacity primarily through their actions in male rats.


Sodium balance is essential for the human body. Sodium retention in the body can cause an increase in blood pressure. Historical understanding of sodium balance is based on studies done mostly in male subjects. Recently, we showed that male and female rats acclimate to a high salt diet differently. Male rats take 3­5 days to increase sodium excretion while female rats increase sodium excretion after 1 day. Endothelin-1 which signals through two receptors, endothelin receptor subtype A and B, is important for controlling sodium excretion by the kidneys. There are known sex-differences in the ratio and function of endothelin receptors in the kidney. However, the role of endothelin receptors in salt handling during acclimation to increased salt intake is not clear. This study sought to identify whether blocking endothelin receptors eliminates the sex-difference in sodium excretion in response to a high salt diet. We treated male and female rats with a blocker for endothelin receptors and evaluated sodium handling by the kidney. Blockade of endothelin receptors increased sodium excretion in male rats fed a high salt diet; whereas sodium excretion in female rats was not affected by blocking endothelin receptors. These data indicate that ET receptors contribute to male­female differences in sodium handling during adjusting to an increased dietary salt.


Assuntos
Cloreto de Sódio na Dieta , Cloreto de Sódio , Ratos , Masculino , Feminino , Animais , Cloreto de Sódio/farmacologia , Cloreto de Sódio na Dieta/farmacologia , Ratos Sprague-Dawley , Receptor de Endotelina B/fisiologia , Endotelinas , Sódio/metabolismo , Endotelina-1 , Dieta , Aclimatação
6.
Am J Physiol Renal Physiol ; 325(2): F235-F247, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37348026

RESUMO

Renal nerves have been an attractive target for interventions aimed at lowering blood pressure; however, the specific roles of renal afferent (sensory) versus efferent sympathetic nerves in mediating hypertension are poorly characterized. A number of studies have suggested that a sympathoexcitatory signal conveyed by renal afferents elicits increases in blood pressure, whereas other studies identified sympathoinhibitory afferent pathways. These sympathoinhibitory pathways have been identified as protective against salt-sensitive increases in blood pressure through endothelin B (ETB) receptor activation. We hypothesized that ETB-deficient (ETB-def) rats, which are devoid of functional ETB receptors except in adrenergic tissues, lack appropriate sympathoinhibition and have lower renal afferent nerve activity following a high-salt diet compared with transgenic controls. We found that isolated renal pelvises from high salt-fed ETB-def animals lack a response to a physiological stimulus, prostaglandin E2, compared with transgenic controls but respond equally to a noxious stimulus, capsaicin. Surprisingly, we observed elevated renal afferent nerve activity in intact ETB-def rats compared with transgenic controls under both normal- and high-salt diets. ETB-def rats have been previously shown to have heightened global sympathetic tone, and we also observed higher total renal sympathetic nerve activity in ETB-def rats compared with transgenic controls under both normal- and high-salt diets. These data indicate that ETB receptors are integral mediators of the sympathoinhibitory renal afferent reflex (renorenal reflex), and, in a genetic rat model of ETB deficiency, the preponderance of sympathoexcitatory renal afferent nerve activity prevails and may contribute to hypertension.NEW & NOTEWORTHY Here, we found that endothelin B receptors are an important contributor to renal afferent nerve responsiveness to a high-salt diet. Rats lacking endothelin B receptors have increased afferent nerve activity that is not responsive to a high-salt diet.


Assuntos
Hipertensão , Rim , Ratos , Animais , Receptor de Endotelina B/genética , Receptor de Endotelina B/metabolismo , Rim/metabolismo , Pressão Sanguínea/fisiologia , Vias Aferentes/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Endotelina-1/metabolismo , Receptor de Endotelina A/metabolismo
7.
Clin Sci (Lond) ; 137(9): 769-772, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37199254

RESUMO

Despite the overwhelming evidence that the kidney is the principal regulator of chronic blood pressure though the ability to sense pressure and adjust blood volume accordingly, recent clinical and preclinical evidence suggests that skin clearance of Na+ through sweat significantly contributes to long-term blood pressure and risk of hypertension. Evidence indicates that changes in skin Na+ content negatively associate with renal function, and factors that influence the concentration of Na+ in sweat are affected by major regulators of Na+ excretion by the kidney such as angiotensin and aldosterone. In addition, known regulatory mechanisms that regulate the amount of sweat produced do not include changes in Na+ intake or blood volume. Because of these reasons, it will be hard to quantify the contribution of Na+ clearance through sweat to blood pressure regulation and hypertension. While Chen et al. demonstrate significant negative associations between sweat Na+ concentration and blood pressure, it is likely that Na+ clearance through the skin has a short-term influence on blood pressure and sweat Na+ concentration is most likely a biomarker of renal function and its key role in hypertension.


Assuntos
Hipertensão , Sódio , Humanos , Suor , Pressão Sanguínea/fisiologia , Homeostase/fisiologia
8.
Am J Physiol Heart Circ Physiol ; 325(1): H106-H112, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37205732

RESUMO

Environmental cues such as light and timing of food intake influence molecular clocks that produce circadian rhythmicity of many biological functions. The master circadian clock is entrained by light input and synchronizes with peripheral clocks in every organ of the body. Careers that require rotating shift work schedules predispose workers to a constant desynchronization of these biological clocks and are associated with increased risk of cardiovascular disease. We used a stroke-prone spontaneously hypertensive rat model exposed to a known biological desynchronizer, chronic environmental circadian disruption (ECD), to test the hypothesis that it would accelerate the time to stroke onset. We then investigated whether time-restricted feeding could delay stroke onset and evaluated its usefulness as a countermeasure when combined with the constant disruption of the light cycle. We found that phase advancing of the light schedule accelerated stroke onset. Restricting food access time to 5 h/day regardless of lighting profoundly delayed stroke onset in both standard 12-h:12-h light/dark or ECD-lighting conditions compared with ad libitum feeding; however, acceleration by ECD versus control lighting conditions was still observed. Since hypertension is a precursor to stroke in this model, we assessed blood pressure in a small cohort longitudinally using telemetry. Mean daily systolic and diastolic blood pressure increased in a similar manner across rats in control and ECD conditions, thus hypertension was not grossly accelerated to cause earlier strokes. However, we observed intermittent dampening of rhythms after each shift of the light cycle reminiscent of a relapsing-remitting nondipping state. Our results suggest that constant disruption of environmental rhythms may be associated with an increased risk of cardiovascular complications in the presence of cardiovascular risk factors.NEW & NOTEWORTHY This stroke-prone spontaneously hypertensive rat model significantly delayed stroke onset with the timed food restriction intervention. Blood pressure recordings in this same model were continuous through the 3 mo and showed dampened systolic rhythms after each shift in the lighting schedule.


Assuntos
Relógios Circadianos , Acidente Vascular Cerebral , Ratos , Animais , Ratos Endogâmicos SHR , Pressão Sanguínea , Longevidade , Luz , Ritmo Circadiano/fisiologia , Relógios Circadianos/fisiologia
9.
bioRxiv ; 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36945391

RESUMO

Aim: We aimed to identify new mechanisms by which a high salt diet (HS) decreases NO production in kidney microvascular endothelial cells. Specifically, we hypothesized HS impairs NO signaling through a histone deacetylase 1 (HDAC1)-dependent mechanism. Methods: Male Sprague Dawley rats were fed normal salt diet (NS; 0.49% NaCl) or high salt diet (4% NaCl) for two weeks. NO signaling was assessed by measuring L-NAME induced vasoconstriction of the afferent arteriole using the blood perfused juxtamedullary nephron (JMN) preparation. In this preparation, kidneys were perfused with blood from a donor rat on a matching or different diet to that of the kidney donor. Kidney endothelial cells were isolated with magnetic activated cell sorting and HDAC1 activity was measured. Results: We found that HS impaired NO signaling in the afferent arteriole. This was restored by inhibition of HDAC1 with MS-275. Consistent with these findings, HDAC1 activity was increased in kidney endothelial cells. We further found the loss of NO to be dependent upon the diet of the blood donor rather than the diet of the kidney donor and the plasma from HS fed rats to be sufficient to induce dysfunction suggesting a humoral factor, we termed Plasma Derived Endothelial-dysfunction Mediator (PDEM), mediates the endothelial dysfunction. The antioxidants, PEG-SOD and PEG-catalase, as well as the NOS cofactor, tetrahydrobiopterin, restored NO signaling. Conclusion: We conclude that HS activates endothelial HDAC1 through PDEM leading to decreased NO signaling. This study provides novel insights into the molecular mechanisms by which a HS decreases renal microvascular endothelial NO signaling.

10.
Front Physiol ; 14: 1086973, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36733911

RESUMO

Demographic studies reveal lower prevalence of hypertension among premenopausal females compared to age-matched males. The kidney plays a central role in the maintenance of sodium (Na+) homeostasis and consequently blood pressure. Renal endothelin-1 (ET-1) is a pro-natriuretic peptide that contributes to sex differences in blood pressure regulation and Na+ homeostasis. We recently showed that activation of renal medullary G protein-coupled estrogen receptor 1 (GPER1) promotes ET-1-dependent natriuresis in female, but not male, rats. We hypothesized that GPER1 upregulates the renal ET-1 signaling system in females, but not males. To test our hypothesis, we determined the effect of GPER1 deletion on ET-1 and its downstream effectors in the renal cortex, outer and inner medulla obtained from 12-16-week-old female and male mice. GPER1 knockout (KO) mice and wildtype (WT) littermates were implanted with telemetry transmitters for blood pressure assessment, and we used metabolic cages to determine urinary Na+ excretion. GPER1 deletion did not significantly affect 24-h mean arterial pressure (MAP) nor urinary Na+ excretion. However, GPER1 deletion decreased urinary ET-1 excretion in females but not males. Of note, female WT mice had greater urinary ET-1 excretion than male WT littermates, whereas no sex differences were observed in GPER1 KO mice. GPER1 deletion increased inner medullary ET-1 peptide content in both sexes but increased outer medullary ET-1 content in females only. Cortical ET-1 content increased in response to GPER1 deletion in both sexes. Furthermore, GPER1 deletion notably increased inner medullary ET receptor A (ETA) and decreased outer medullary ET receptor B (ETB) mRNA expression in male, but not female, mice. We conclude that GPER1 is required for greater ET-1 excretion in females. Our data suggest that GPER1 is an upstream regulator of renal medullary ET-1 production and ET receptor expression in a sex-specific manner. Overall, our study identifies the role of GPER1 as a sex-specific upstream regulator of the renal ET-1 system.

11.
Psychosom Med ; 85(2): 118-129, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36728859

RESUMO

OBJECTIVE: Early life stress (ELS) occurring during childhood and adolescence is an established risk factor for later cardiovascular disease and dysregulated reactivity to acute social stress. This study examined whether ELS associations with baseline cardiovascular functioning, cardiovascular stress reactivity and recovery, and emotional stress reactivity vary across levels of emotion-oriented, task-oriented, and avoidant coping styles. METHODS: The sample included 1027 adolescents and young adults (mean age = 19.29 years; 50% female; 64% Black, 34% non-Hispanic White) who reported on their ELS exposure and coping styles. Participants completed a standardized acute social stress test (the Trier Social Stress Test [TSST]), with heart rate (HR) and blood pressure (BP) measured before, during, and after the TSST. Self-reports of negative emotions during the TSST indexed emotional stress reactivity. RESULTS: Multiple regression models adjusting for demographic factors and body mass index showed that ELS was associated with lower HR stress reactivity, avoidant coping was related to lower systolic BP and diastolic BP during stress and lower systolic BP during recovery, and higher emotion-oriented coping and lower task-oriented coping predicted greater emotional stress reactivity. A consistent pattern emerged where emotion-oriented coping amplified the associations between ELS and maladaptive stress responses (blunted cardiovascular stress reactivity and recovery; enhanced emotional stress reactivity), whereas lower levels of emotion-oriented coping were associated with resilient profiles among those who experienced ELS (lower resting HR, lower emotional stress reactivity, average HR and BP stress reactivity and recovery). However, low levels of emotion-oriented coping also conferred a risk of higher BP during recovery for those with high levels of ELS. CONCLUSIONS: These results suggest that low to moderate levels of emotion-oriented coping promote optimal cardiovascular and emotional reactivity to acute stress among individuals exposed to ELS.


Assuntos
Experiências Adversas da Infância , Adolescente , Adulto Jovem , Humanos , Feminino , Adulto , Masculino , Estresse Psicológico , Adaptação Psicológica , Emoções/fisiologia , Autorrelato
12.
Hypertension ; 80(3): 503-522, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36448463

RESUMO

Healthy individuals exhibit blood pressure variation over a 24-hour period with higher blood pressure during wakefulness and lower blood pressure during sleep. Loss or disruption of the blood pressure circadian rhythm has been linked to adverse health outcomes, for example, cardiovascular disease, dementia, and chronic kidney disease. However, the current diagnostic and therapeutic approaches lack sufficient attention to the circadian rhythmicity of blood pressure. Sleep patterns, hormone release, eating habits, digestion, body temperature, renal and cardiovascular function, and other important host functions as well as gut microbiota exhibit circadian rhythms, and influence circadian rhythms of blood pressure. Potential benefits of nonpharmacologic interventions such as meal timing, and pharmacologic chronotherapeutic interventions, such as the bedtime administration of antihypertensive medications, have recently been suggested in some studies. However, the mechanisms underlying circadian rhythm-mediated blood pressure regulation and the efficacy of chronotherapy in hypertension remain unclear. This review summarizes the results of the National Heart, Lung, and Blood Institute workshop convened on October 27 to 29, 2021 to assess knowledge gaps and research opportunities in the study of circadian rhythm of blood pressure and chronotherapy for hypertension.


Assuntos
Hipertensão , National Heart, Lung, and Blood Institute (U.S.) , Estados Unidos , Humanos , Pressão Sanguínea/fisiologia , Medicina de Precisão , Hipertensão/tratamento farmacológico , Cronoterapia , Ritmo Circadiano/fisiologia , Anti-Hipertensivos/farmacologia
14.
Biochim Biophys Acta Mol Cell Res ; 1869(9): 119301, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35642843

RESUMO

Podocyte foot processes are an important cellular layer of the glomerular barrier that regulates glomerular permeability. Insulin via the protein kinase G type Iα (PKGIα) signaling pathway regulates the balance between contractility and relaxation (permeability) of the podocyte barrier by regulation of the actin cytoskeleton. This mechanism was shown to be disrupted in diabetes. Rho family guanosine-5'-triphosphates (GTPases) are dynamic modulators of the actin cytoskeleton and expressed in cells that form the glomerular filtration barrier. Thus, changes in Rho GTPase activity may affect glomerular permeability to albumin. The present study showed that Rho family GTPases control podocyte migration and permeability. Moreover these processes are regulated by insulin in PKGIα-dependent manner. Modulation of the PKGI-dependent activity of Rac1 and RhoA GTPases with inhibitors or small-interfering RNA impair glomerular permeability to albumin. We also demonstrated this mechanism in obese, insulin-resistant Zucker rats. We propose that PKGIα-Rac1-RhoA crosstalk is necessary in proper organization of the podocyte cytoskeleton and consequently the stabilization of glomerular architecture and regulation of filtration barrier permeability.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo I , Podócitos , Albuminas/metabolismo , Animais , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Citoesqueleto/metabolismo , Insulina/metabolismo , Permeabilidade , Podócitos/metabolismo , Ratos , Ratos Wistar , Ratos Zucker , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
15.
Hypertension ; 79(7): 1395-1408, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35545941

RESUMO

BACKGROUND: Emerging evidence over the past several years suggests that diurnal control of sodium excretion is sex dependent and involves the renal endothelin system. Given recent awareness of disruptions of circadian function in obesity, we determined whether diet-induced obesity impairs renal handling of an acute salt load at different times of day and whether this varies by sex and is associated with renal endothelin dysfunction. METHODS: Male and female Sprague-Dawley rats were placed on a high-fat diet for 8 weeks before assessing renal sodium handling and blood pressure. RESULTS: Male, but not female, rats on high fat had a significantly reduced natriuretic response to acute NaCl injection at the beginning of their active period that was associated with lower endothelin 1 (ET-1) excretion, lower ET-1 mRNA expression in the cortex and outer medulla as well as lower ETB receptor expression in the outer medulla of the high-fat rats. Obese males also had significantly higher blood pressure (telemetry) that was exacerbated by adding high salt to the diet during the last 2 weeks. While female rats developed hypertension with a high-fat diet, they were not salt sensitive and ET-1 excretion was unchanged. CONCLUSIONS: These data identify diet-induced obesity as a sex-specific disruptive factor for maintaining proper sodium handling. Although high-fat diets induce hypertension in both sexes, these data reveal that males are at greater risk of salt-dependent hypertension and further suggest that females have more redundant systems that can be productive against salt-sensitive hypertension in at least some circumstances.


Assuntos
Hipertensão , Sódio , Animais , Pressão Sanguínea/fisiologia , Dieta , Endotelina-1/metabolismo , Endotelinas , Feminino , Hipertensão/metabolismo , Masculino , Obesidade/etiologia , Ratos , Ratos Sprague-Dawley , Receptor de Endotelina B/genética , Caracteres Sexuais , Sódio/metabolismo , Cloreto de Sódio/efeitos adversos , Cloreto de Sódio na Dieta/farmacologia
16.
Am J Physiol Endocrinol Metab ; 322(6): E508-E516, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35373585

RESUMO

Increased adiposity is associated with dysregulation of the endothelin system, both of which increase the risk of cardiovascular disease (CVD). Preclinical data indicate that endothelin dysregulation also reduces resting energy expenditure (REE). The objective was to test the hypothesis that endothelin receptor antagonism will increase REE in people with obesity compared with healthy weight individuals. Using a double blind, placebo-controlled, crossover design, 32 participants [healthy weight (HW): n = 16, BMI: 21.3 ± 2.8 kg/m2, age: 26 ± 7 yr and overweight/obese (OB): n = 16, BMI: 33.5 ± 9.5 kg/m2, age: 31 ± 6 yr] were randomized to receive either 125 mg of bosentan (ETA/B antagonism) or placebo twice per day for 3 days. Breath-by-breath gas exchange data were collected and REE was assessed by indirect calorimetry. Venous blood samples were analyzed for concentrations of endothelin-1 (ET-1). Treatment with bosentan increased plasma ET-1 in both OB and HW groups. Within the OB group, the changes in absolute REE (PLA: -77.6 ± 127.6 vs. BOS: 72.2 ± 146.6 kcal/day; P = 0.046). The change in REE was not different following either treatment in the HW group. Overall, absolute plasma concentrations of ET-1 following treatment with bosentan were significantly associated with kcal/day of fat (r = 0.488, P = 0.005), percentage of fat utilization (r = 0.415, P = 0.020), and inversely associated with the percentage of carbohydrates (r = -0.419, P = 0.019), and respiratory exchange ratio (r = -0.407, P = 0.023). Taken together, these results suggest that modulation of the endothelin system may represent a novel therapeutic approach to increase both resting metabolism and caloric expenditure, and reduce CVD risk in people with increased adiposity.NEW & NOTEWORTHY Findings from our current translational investigation demonstrate that dual endothelin A/B receptor antagonism increases total REE in overweight/obese individuals. These results suggest that modulation of the endothelin system may represent a novel therapeutic target to increase both resting metabolism and caloric expenditure, enhance weight loss, and reduce CVD risk in seemingly healthy individuals with elevated adiposity.


Assuntos
Adiposidade , Doenças Cardiovasculares , Adulto , Metabolismo Basal , Bosentana , Calorimetria Indireta , Endotelinas/metabolismo , Metabolismo Energético , Humanos , Obesidade/metabolismo , Sobrepeso/metabolismo , Receptores de Endotelina/metabolismo , Adulto Jovem
17.
Can J Physiol Pharmacol ; 100(7): 637-650, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35413222

RESUMO

Progressive iron accumulation and renal impairment are prominent in both patients and mouse models of sickle cell disease (SCD). Endothelin A receptor (ETA) antagonism prevents this iron accumulation phenotype and reduces renal iron deposition in the proximal tubules of SCD mice. To better understand the mechanisms of iron metabolism in the kidney and the role of the ETA receptor in iron chelation and transport, we studied renal iron handling in a nonsickle cell iron overload model, heme oxygenase-1 (Hmox-1-/-) knockout mice. We found that Hmox-1-/- mice had elevated plasma endothelin-1 (ET-1), cortical ET-1 mRNA expression, and renal iron content compared with Hmox-1+/+ controls. The ETA receptor antagonist, ambrisentan, attenuated renal iron deposition, without any changes to anemia status in Hmox-1-/- mice. This was accompanied by reduced urinary iron excretion. Finally, ambrisentan had an important iron recycling effect by increasing the expression of the cellular iron exporter, ferroportin-1 (FPN-1), and circulating total iron levels in Hmox-1-/- mice. These findings suggest that the ET-1/ETA signaling pathway contributes to renal iron trafficking in a murine model of iron overload.


Assuntos
Anemia Falciforme , Sobrecarga de Ferro , Anemia Falciforme/complicações , Anemia Falciforme/metabolismo , Animais , Antagonistas do Receptor de Endotelina A/farmacologia , Antagonistas do Receptor de Endotelina A/uso terapêutico , Antagonistas dos Receptores de Endotelina , Endotelina-1/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Ferro/metabolismo , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/metabolismo , Rim/metabolismo , Camundongos , Camundongos Knockout , Receptor de Endotelina A/genética , Receptor de Endotelina A/metabolismo
18.
FASEB J ; 36(4): e22267, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35306694

RESUMO

Peroxiredoxin-2 (Prx-2) is a critical antioxidant protein in red blood cells (RBC). Prx-2 is oxidized to a disulfide covalently-bound dimer by H2 O2 , and then reduced back by the NADPH-dependent thioredoxin-thioredoxin reductase system. The reduction of oxidized Prx-2 is relatively slow in RBCs. Since Prx-2 is highly abundant, Prx-2s' peroxidase catalytic cycle is not considered to be limiting under normal conditions. However, whether Prx-2 recycling becomes limiting when RBCs are exposed to stress is not known. Using three different model systems characterized by increased oxidative damage to RBCs spanning the physiologic (endogenous RBCs of different ages), therapeutic (cold-stored RBCs in blood banks) and pathologic (RBCs from sickle cell disease (SCD) patients and humanized SCD mice) spectrum, basal levels of Prx-2 oxidation and Prx-2 recycling kinetics after addition of H2 O2 were determined. The reduction of oxidized Prx-2 was significantly slower in older versuin older versus younger RBCs, in RBCs stored for 4-5 weeks compared to 1 week, and in RBC from pediatric SCD patients compared to RBCs from control non-SCD patients. Similarly, the rate of Prx-2 recycling was slower in humanized SCD mice compared to WT mice. Treatment of RBC with carbon monoxide (CO) to limit heme-peroxidase activity had no effect on Prx-2 recycling kinetics. Treatment with glucose attenuated slowed Prx-2 recycling in older RBCs and SCD RBCs, but not stored RBCs. In conclusion, the reduction of oxidized Prx-2 can be further slowed in RBCs, which may limit the protection afforded by this antioxidant protein in settings associated with erythrocyte stress.


Assuntos
Anemia Falciforme , Peroxirredoxinas , Idoso , Anemia Falciforme/metabolismo , Animais , Antioxidantes/metabolismo , Eritrócitos/metabolismo , Humanos , Camundongos , Peroxidase/metabolismo , Peroxirredoxinas/metabolismo
19.
Am J Physiol Renal Physiol ; 322(3): F335-F343, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35100821

RESUMO

Night shift work increases risk of cardiovascular disease associated with an irregular eating schedule. Elevating this risk is the high level of salt intake observed in the typical Western diet. Renal Na+ excretion has a distinct diurnal pattern, independent of time of intake, yet the interactions between the time of intake and the amount of salt ingested are not clear. The hypothesis of the present study was that limiting food intake to the typically inactive period in addition to high-salt (HS) feeding will disrupt the diurnal rhythm of renal Na+ excretion. Male Sprague-Dawley rats were placed on either normal-salt (NS; 0.49% NaCl) or HS (4% NaCl) diets. Rats were housed in metabolic cages and allowed food ad libitum and then subjected to inactive period time-restricted feeding (iTRF) for 5 days. As expected, rats fed NS and allowed food ad libitum had a diurnal pattern of Na+ excretion. The diurnal pattern of Na+ excretion was not significantly different after 5 days of iTRF compared with ad libitum rats. In response to HS, the diurnal pattern of Na+ excretion was similar to NS-fed rats. However, this pattern was attenuated after 5 days of HS iTRF. The diurnal excretion pattern of urinary aldosterone was abolished in both NS iTRF and HS iTRF rats. These data support the hypothesis that HS intake combined with iTRF impairs circadian mechanisms associated with renal Na+ excretion.NEW & NOTEWORTHY Timing of food intake normally has little effect on the diurnal pattern of Na+ and water excretion. However, rats on a high-salt diet were unable to maintain this pattern, yet K+ excretion was more readily adjusted to match timing of intake. These data support the hypothesis that Na+ and water homeostasis are impacted by timing of high-salt diets.


Assuntos
Ritmo Circadiano , Cloreto de Sódio na Dieta , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Sódio , Cloreto de Sódio , Cloreto de Sódio na Dieta/metabolismo , Água
20.
J Am Heart Assoc ; 11(5): e020450, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35191321

RESUMO

Background Premenopausal women are less likely to develop hypertension and salt-related complications than are men, yet the impact of sex on mechanisms regulating Na+ homeostasis during dietary salt challenges is poorly defined. Here, we determined whether female rats have a more efficient capacity to acclimate to increased dietary salt intake challenge. Methods and Results Age-matched male and female Sprague Dawley rats maintained on a normal-salt (NS) diet (0.49% NaCl) were challenged with a 5-day high-salt diet (4.0% NaCl). We assessed serum, urinary, skin, and muscle electrolytes; total body water; and kidney Na+ transporters during the NS and high-salt diet phases. During the 5-day high-salt challenge, natriuresis increased more rapidly in females, whereas serum Na+ and body water concentration increased only in males. To determine if females are primed to handle changes in dietary salt, we asked the question whether the renal endothelin-1 natriuretic system is more active in female rats, compared with males. During the NS diet, female rats had a higher urinary endothelin-1 excretion rate than males. Moreover, Ingenuity Pathway Analysis of RNA sequencing data identified the enrichment of endothelin signaling pathway transcripts in the inner medulla of kidneys from NS-fed female rats compared with male counterparts. Notably, in human subjects who consumed an Na+-controlled diet (3314-3668 mg/day) for 3 days, women had a higher urinary endothelin-1 excretion rate than men, consistent with our findings in NS-fed rats. Conclusions These results suggest that female sex confers a greater ability to maintain Na+ homeostasis during acclimation to dietary Na+ challenges and indicate that the intrarenal endothelin-1 natriuretic pathway is enhanced in women.


Assuntos
Cloreto de Sódio na Dieta , Cloreto de Sódio , Aclimatação , Animais , Pressão Sanguínea , Dieta , Endotelina-1/metabolismo , Feminino , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Sódio , Cloreto de Sódio na Dieta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA