Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(46): 31995-32001, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37975701

RESUMO

Combining vibrational circular dichroism (VCD) spectroscopy with the matrix isolation (MI) technique opens up interesting possibilities to study chiral molecules. MI involves the isolation of guest species in inert solid matrices at cryogenic temperatures. Hence, MI-VCD measures are solid-state VCD measurements, and as such, can suffer from mostly birefringance-related artefacts in the same way as common solid-state VCD measurements. In this contribution, we demonstrate that the sample preparation condition have tremendous impact on the quality and reliability of the recorded MI-VCD spectra. While MI-IR spectra are basically blind to these artefacts, the variation of deposition temperatures and host flow rates seem to control whether high quality MI-VCD spectra are obtained or if depolarization effects lead to completely obscured spectra. For two selected examples, styrene oxide (SO) and 1-phenyl propylene oxide (PPO), we discuss how the various experimental conditions may lead to the aforementioned effects and give a microscopic description of their origin.

2.
Chirality ; 35(9): 586-618, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37550220

RESUMO

The nonresonant optical activity of two highly flexible aliphatic amines, (2R)-3-methyl-2-butanamine (R-MBA) and (2R)-(3,3)-dimethyl-2-butanamine (R-DMBA), has been probed under isolated and solvated conditions to examine the roles of conformational isomerism and to explore the influence of extrinsic perturbations. The optical rotatory dispersion (ORD) measured in six solvents presented uniformly negative rotatory powers over the 320-590 nm region, with the long-wavelength magnitude of chiroptical response growing nearly monotonically as the dielectric constant of the surroundings diminished. The intrinsic specific optical rotation, α λ T (in deg dm-1 [g/mL]-1 ), extracted for ambient vapor-phase samples of R-MBA [-11.031(98) and -2.29 (11)] and R-DMBA [-9.434 (72) and -1.350 (48)] at 355 and 633 nm were best reproduced by counterintuitive solvents of high polarity (yet low polarizability) like acetonitrile and methanol. Attempts to interpret observed spectral signatures quantitatively relied on the linear-response frameworks of density-functional theory (B3LYP, cam-B3LYP, and dispersion-corrected analogs) and coupled-cluster theory (CCSD), with variants of the polarizable continuum model (PCM) deployed to account for the effects of implicit solvation. Building on the identification of several low-lying equilibrium geometries (nine for R-MBA and three for R-DMBA), ensemble-averaged ORD profiles were calculated at T = 300 K by means of the independent-conformer ansatz, which enabled response properties predicted for the optimized structure of each isomer to be combined through Boltzmann-weighted population fractions derived from corresponding relative internal-energy or free-energy values, the latter of which stemmed from composite CBS-APNO and G4 analyses. Although reasonable accord between theory and experiment was realized for the isolated (vapor-phase) species, the solution-phase results were less satisfactory and tended to degrade progressively as the solvent polarity increased. These trends were attributed to solvent-mediated changes in structural parameters and energy metrics for the transition states that separate and putatively isolate the equilibrium conformations supported by the ground electronic potential-energy surface, with the resulting displacement of barrier locations and/or decrease of barrier heights compromising the underlying premise of the independent-conformer ansatz.

3.
Phys Chem Chem Phys ; 25(4): 3343-3353, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36633064

RESUMO

The inclusion of anharmonicity in vibrational spectral analyis remains associated to small molecular systems with up to a dozen of atoms, with half a dozen of non-hydrogen atoms, typically thesize of propylene oxide. One may see two reasons for this: first of all, larger systems are often thought to be computationally too demanding (high computational costs) for a full anharmonic vibrational analysis. Second, the identification of resonances and their correction is often considered something only expert theoreticians could address because of the lack of unequivocal criteria. In this contribution, we illustrate that resonances can indeed become a complex problem, which can be handled almost transparently thanks to recent advances in vibrational perturbation theory (VPT2). The study also emphasizes the importance and the central role played by experiment in benchmarking novel theoretical approaches. In fact, we herein provide the currently highest resolution VCD spectra available for α- and ß-pinene obtained under matrix-isolation conditions and in liquid Xenon as solvent. They are interpreted by VPT2 with novel tests for the identification of resonances. Hence, the study demonstrates the mutual stimulation of advances in both experimental techniques and computational models.

4.
Phys Chem Chem Phys ; 24(48): 30017-30026, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36472246

RESUMO

Salicylimines are versatile compounds in which an excited-state intramolecular proton transfer and torsional motions may set in upon photoexcitation. Here, we study N-(α-phenylethyl)salicylimine (PESA) to elucidate how the photochemical reaction pathways depend on the excitation wavelength and to what extent the relative photoproduct distribution can be steered towards a desired species. DFT structure and potential energy calculations disclose that the most stable ground-state conformer is an enol species and that the photodynamics may proceed differently depending on the excited state that is reached. With matrix isolation infrared spectroscopy, the predominance of the enol conformer of PESA is confirmed. Illumination of the cryogenic sample with different wavelengths shifts the ratio of enol and keto products, and by sequential irradiation a selective re- and depopulation is possible. Femtosecond transient absorption spectroscopy further reveals that also at room temperature, the outcome of the photoreaction depends on excitation wavelength, and in combination with the calculations, it can be rationalized that the decisive step occurs within the first hundred femtoseconds. Since the ultrafast dynamics mostly match those of similar salicylimines, our findings might also apply to those systems and provide additional insight into their reported sensitivity on excitation energy.


Assuntos
Prótons , Teoria Quântica , Fotoquímica , Espectrofotometria Infravermelho
5.
Chemistry ; 25(36): 8503-8507, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31062889

RESUMO

A complementary set of chiral N,N-ligands enables the Pd-catalyzed ß-C-H arylation of unbiased internal methylene groups in good yield and with high levels of enantio- and diastereoinduction. Both the dia- and enantioselectivity can be reversed, thus allowing the selective arylation of any of the four ß-C-H bonds in cycloalkanecarboxamides of various ring sizes. The method is applicable to a broad range of aryl iodides with electron-withdrawing and -donating substituents in the o-, m-, or p-position.

6.
Phys Chem Chem Phys ; 21(12): 6582-6587, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30849167

RESUMO

Propylene oxide (PO) is one of the smallest chiral molecules and thus the ideal candidate to benchmark both new experimental and theoretical approaches. Previous studies on the fingerprint region of the IR and VCD spectra of PO under matrix-isolation conditions revealed a good performance of theoretical approaches to reproduce anharmonic frequencies and intensities. For certain bands which were found to be involved in Fermi resonances, theory did not agree with the experimental observations. Herein we present the IR and VCD spectra of PO recorded in liquefied xenon, an experimental environment which combines the advantages of solution phase and matrix environment. This unique environment allows us to record well-resolved VCD signatures of many combination modes. We show that the VCD signatures of the Fermi resonant modes previously reported for MI-VCD conditions are likely to arise due to matrix effects. Therefore, we compare the experimental results obtained in liquid xenon with state-of-the-art anharmonic spectra calculations in order to shed more light on the assignments of the IR and VCD spectral signatures of PO.

7.
J Org Chem ; 84(9): 5369-5382, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-30887802

RESUMO

We report herein a general, practical method based on asymmetric transfer hydrogenation (ATH) to control the planar chirality of a range of substituted [2.2]paracyclophanes (pCps). Our strategy enabled us to perform both the kinetic resolution (KR) of racemic compounds and the desymmetrization of centrosymmetric meso derivatives on synthetically useful scales. High selectivities (up to 99% ee) and good yields (up to 48% for the KRs and 74% for the desymmetrization reactions) could be observed for several poly-substituted paracyclophanes, including a series of bromine-containing molecules. The optimized processes could be run up to the gram scale without any loss in the reaction efficiencies. Because of its broad applicability, the ATH approach appears to be the method of choice to access planar chiral pCps in their enantiopure form.

8.
J Phys Chem B ; 122(33): 8056-8064, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30071728

RESUMO

On the basis of a comprehensive analysis of experimental and theoretical IR and vibrational circular dichroism (VCD) spectra, we make suggestions for solvation schemes for carboxylic acids. More specifically, we have studied two chiral carboxylic acids in solvents of different polarity and hydrogen bonding capabilities and verify previously proposed solute-solvent structures for their general applicability. Explicit solvation with acetonitrile- d3 is shown to be most important for carboxylic acid groups directly attached to a stereocenter, while dimethylsulfoxide- d6 should always be considered explicitly in spectra analysis. In order to circumvent the need to consider dimerization with calculations on the full homodimer in nonpolar solvents such as chloroform- d1, we quantitatively evaluate the quality of truncated models. Methanol- d4 is concluded to be the most challenging solvent for VCD studies of carboxylic acids, as the acid strength affects the hydrogen bonding strength to methanol and thus significantly determines the degree and effect of solvation. With the help of matrix-isolation IR spectroscopy, we also characterize the monomeric species of α-phenylpropionic acid.

9.
Chemphyschem ; 18(15): 1987-1991, 2017 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-28577348

RESUMO

The hexameric capsule of resorcin[4]arene 1 is capable of encapsulating tertiary amines, which has recently been used in the application of [(1)6 (H2 O)8 ] as (co-)catalyst in various asymmetric reactions. However, not much is known about the highly asymmetric but conformationally very dynamic structure of the capsule after uptake of chiral molecules. Therefore, in this contribution, we utilize electronic circular dichroism and vibrational circular dichroism spectroscopy to investigate how several chiral guest molecules affect the structural preferences of the capsule [(1)6 (H2 O)8 ]. In particular, we show that one small chiral amine encapsulated in [(1)6 (H2 O)8 ] is sufficient to control and dictate the stereochemical preferences of the entire capsule. Furthermore, neither strong π-π interactions nor a significant steric bulk are required for this induction. The observation of such a chiral imprint of the guest's stereochemistry onto its host molecule is expected to have implications also for other supramolecular capsules.

10.
Angew Chem Int Ed Engl ; 56(7): 1925-1928, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28078764

RESUMO

Characterizing the stereochemistry of transient photoisomerization products remains a big challenge for the design of molecular machines, such as unidirectional molecular motors. Often these states are not stable long enough to be characterized in detail using conventional spectroscopic tools. The structurally simple camphorquinone imine 1 serves to illustrate the advantage of combining the matrix-isolation technique with vibrational circular dichroism (VCD) spectroscopy for the investigation of photoisomerizations of chiral molecules. In particular, it is shown that both (E)- and (Z)-1 can be generated photochemically at cryogenic temperatures in an argon matrix, and more importantly, that the stereochemistry of both switching states can be characterized reliably.

11.
Chemistry ; 22(35): 12479-86, 2016 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-27404847

RESUMO

Four isomeric azulenylcarbenes were synthesized in argon matrices by photolysis of the corresponding diazo precursors, and the photochemistry of these carbenes was studied. The carbenes and their rearranged products were characterized by IR, UV/Vis, and EPR spectroscopy, and the experimental data were compared to results from DFT calculations. While 2-, 5- and 6-azulenylcarbene show triplet ground states, 1-azulenylcarbene exhibits a singlet ground state, in accord with theoretical predictions. The rearrangements of the azulenylcarbenes give access to a number of unusual C11 H8 isomers, such as other carbenes and strained allenes.

12.
Chemistry ; 22(35): 12455-63, 2016 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-27457499

RESUMO

The observation of the active species is the goal of most spectroscopic investigations on enantioselective organocatalysts in solution. Although NMR spectroscopy is widely applied, it has low sensitivity for conformational changes or the chiral nature of the interactions. In the present work, we exemplify the use of vibrational circular dichroism (VCD) spectroscopy for the characterization of a chiral thiourea model compound in nonpolar and polar solvents, as well as for a detailed analysis of its interaction with a model reactant. We discuss solvent-induced conformational changes of the thiourea, and provide evidence for an unexpected binding topology between the thiourea and an acetate anion. The results clearly showcase the possibilities offered by using VCD spectroscopy in the characterization of chiral organocatalysts.

13.
Phys Chem Chem Phys ; 18(19): 13496-502, 2016 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-27125494

RESUMO

The chiral amine α-phenylethyl amine (PEA) was isolated in cryogenic matrices and investigated using vibrational circular dichroism (VCD) and infrared spectroscopy. The potential energy surface (PES) of PEA features five different conformers connected by relatively low conformational transition states. Based on the IR spectra, it could be confirmed that all conformational energy barriers are passed at a deposition temperature of 20 K, and that only the global minimum conformation of PEA is populated in both argon and nitrogen matrices. However, differences in the calculated and experimental VCD spectra indicate deviations from the minimum structure by perturbation of the phenyl ring as well as of the amine orientation. The degree of the perturbation is found to also depend on the choice of the host gas, which shows the subtle influence of the environment on the conformational distortion of PEA.

14.
Angew Chem Int Ed Engl ; 54(30): 8841-5, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26101152

RESUMO

Ionic interactions are increasingly appreciated as a key, asymmetry-inducing factor in enantioselective catalytic transformations, including those involving Brønsted acid or base catalysis, phase-transfer catalysis, and related processes. However, a detailed understanding of these interactions is often lacking. Herein, we show how an enantiopure anion enforces a chiral conformation onto a catalytically relevant achiral cation. Specifically, we use vibrational circular dichroism (VCD) spectroscopy to monitor the transmission of stereochemical information from a chiral phosphate anion to a flexible manganese(III)-salen cation. We show that VCD can be used to study solvent effects and that the obtained chiroptical data directly and quantitatively correlate with the experimentally observed enantioselectivity in an asymmetric olefin epoxidation reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA