Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Biol ; 33(24): 5478-5487.e5, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38065097

RESUMO

The ability to recognize others is a frequent assumption of models of the evolution of cooperation. At the same time, cooperative behavior has been proposed as a selective agent favoring the evolution of individual recognition abilities. Although theory predicts that recognition and cooperation may co-evolve, data linking recognition abilities and cooperative behavior with evidence of selection are elusive. Here, we provide evidence of a selective link between individual recognition and cooperation in the paper wasp Polistes fuscatus through a combination of clinal, common garden, and population genomics analyses. We identified latitudinal clines in both rates of cooperative nesting and color pattern diversity, consistent with a selective link between recognition and cooperation. In behavioral experiments, we replicated previous results demonstrating individual recognition in cooperative and phenotypically diverse P. fuscatus from New York. In contrast, wasps from a less cooperative and phenotypically uniform Louisiana population showed no evidence of individual recognition. In a common garden experiment, groups of wasps from northern populations formed more stable and individually biased associations, indicating that recognition facilitates group stability. The strength of recent positive selection on cognition-associated loci likely to mediate individual recognition is substantially greater in northern compared with southern P. fuscatus populations. Collectively, these data suggest that individual recognition and cooperative nesting behavior have co-evolved in P. fuscatus because recognition helps stabilize social groups. This work provides evidence of a specific cognitive phenotype under selection because of social interactions, supporting the idea that social behavior can be a key driver of cognitive evolution.


Assuntos
Reconhecimento Psicológico , Vespas , Animais , Cognição , Comportamento Social , Fenótipo , Comportamento Cooperativo , Vespas/genética , Evolução Biológica
2.
Proc Biol Sci ; 281(1774): 20132457, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24225460

RESUMO

Communication depends on reliability. Yet, the existence of stable honest signalling presents an evolutionary puzzle. Why should animals signal honestly in the face of a conflict of interest? While students of animal signalling have offered several theoretical answers to this puzzle, the most widely studied model, commonly called the 'handicap principle', postulates that the costs of signals stabilize honesty. This model is the motivating force behind an enormous research enterprise that explores signal costs--whether they are physiological, immunological, neural, developmental or caloric. While there can be no question that many signals are costly, we lack definitive experimental evidence demonstrating that costs stabilize honesty. This study presents a laboratory signalling game using blue jays (Cyanocitta cristata) that provides, to our knowledge, the first experimental evidence showing honesty persists when costs are high and disappears when costs are low.


Assuntos
Comunicação Animal , Enganação , Teoria dos Jogos , Passeriformes/fisiologia , Animais , Evolução Biológica , Recompensa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA