Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
J Funct Biomater ; 15(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38921520

RESUMO

The use of endosseous dental implants may become unfeasible in the presence of significant maxillary bone atrophy; thus, surgical techniques have been proposed to promote bone regeneration in such cases. However, such techniques are complex and may expose the patient to complications. Subperiosteal implants, being placed between the periosteum and the residual alveolar bone, are largely independent of bone thickness. Such devices had been abandoned due to the complexity of positioning and adaptation to the recipient bone site, but are nowadays witnessing an era of revival following the introduction of new acquisition procedures, new materials, and innovative manufacturing methods. We have analyzed the changes induced in gene and protein expression in C-12720 human osteoblasts by differently surface-modified TiO2 materials to verify their ability to promote bone formation. The TiO2 materials tested were (i) raw machined, (ii) electropolished with acid mixture, (iii) sand-blasted + acid-etched, (iv) AlTiColorTM surface, and (v) anodized. All five surfaces efficiently stimulated the expression of markers of osteoblastic differentiation, adhesion, and osteogenesis, such as RUNX2, osteocalcin, osterix, N-cadherin, ß-catenin, and osteoprotegerin, while cell viability/proliferation was unaffected. Collectively, our observations document that presently available TiO2 materials are well suited for the manufacturing of modern subperiosteal implants.

2.
Antioxidants (Basel) ; 12(6)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37372032

RESUMO

Boric acid (BA) is the dominant form of boron in plasma, playing a role in different physiological mechanisms such as cell replication. Toxic effects have been reported, both for high doses of boron and its deficiency. Contrasting results were, however, reported about the cytotoxicity of pharmacological BA concentrations on cancer cells. The aim of this review is to briefly summarize the main findings in the field ranging from the proposed mechanisms of BA uptake and actions to its effects on cancer cells.

3.
J Funct Biomater ; 14(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36826858

RESUMO

INTRODUCTION: Titanium alloys currently are the most used material for the manufacture of dental endosseous implants. However, in partially or totally edentulous patients, varying degrees of maxillary bone resorption usually occur, making the application of these devices difficult or even impossible. In these cases, a suitable alternative is offered by subperiosteal implants, whose use is undergoing a revival of interest following the introduction of novel, computer-assisted manufacturing techniques. Several procedures have been developed for the modification of titanium surfaces so to improve their biocompatibility and integration with bone. Information is, however, still incomplete as far as the most convenient surface modifications to apply with subperiosteal implants, in which an integration with soft mucosal tissues is just as important. OBJECTIVES: The present study aimed at evaluating whether different treatments of titanium surfaces can produce different effects on the viability, attachment, and differentiation of gingival fibroblasts, i.e., the cell type mainly involved in osteointegration as well as the healing of soft tissues injured by surgical procedures, in order to verify whether any of the treatments are preferable under these respects. METHODOLOGY: The human immortalized gingival fibroblast (CRL-4061 line) were cultured in the presence of titanium specimens previously treated with five different procedures for surface modification: (i) raw machined (Ti-1); (ii) electropolished (Ti-2); (iii) sand-blasted acid-etched (Ti-3); (iv) Al Ti Color™ proprietary procedure (Ti-4); and (v) anodized (Ti-5). At different times of incubation, viability and proliferation of cells, was determined along with the changes in the expression patterns of ECM-related genes involved in fibroblast attachment and differentiation: vinculin, fibronectin, collagen type I-alpha 1 chain, focal adhesion kinase, integrin ß-1, and N-cadherin. Three different experiments were carried out for each experimental point. The release from fibroblasts of endothelin-1 was also analyzed as a marker of inflammatory response. The proliferation and migration of fibroblasts were evaluated by scratch tests. RESULTS: None of the five types of titanium surface tested significantly affected the fibroblasts' viability and proliferation. The release of endothelin-1 was also not significantly affected by any of the specimens. On the other hand, all titanium specimens significantly stimulated the expression of ECM-related genes at varying degrees. The proliferation and migration abilities of fibroblasts were also significantly stimulated by all types of titanium surface, with a higher-to-lower efficiency in the order: Ti-3 > Ti-4 > Ti-5 > Ti-2 > Ti-1, thus identifying sandblasting acid-etching as the most convenient treatment. CONCLUSIONS: Our observations suggest that the titanium alloys used for manufacturing subperiosteal dental implants do not produce cytotoxic or proinflammatory effects on gingival fibroblasts, and that sandblasting acid-etching may be the surface treatment of choice as to stimulate the differentiation of gingival fibroblasts in the direction of attachment and migration, i.e., the features allegedly associated with a more efficient implant osteointegration, wound healing, and connective tissue seal formation.

4.
Biofactors ; 49(2): 405-414, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36468437

RESUMO

Ferroptosis is a form of regulated cell death (RCD) characterized by intracellular iron ion accumulation and reactive oxygen species (ROS)-induced lipid peroxidation. Ferroptosis in cancer and ferroptosis-related anticancer drugs have recently gained interest in the field of cancer treatment. Boron is an essential trace element playing an important role in several biological processes. Recent studies have described contrasting effects of boric acid (BA) in cancer cells, ranging from protective/mitogenic to damaging/antiproliferative. Interestingly, boron has been shown to interfere with critical factors involved in ferroptosis-intracellular glutathione and lipid peroxidation in the first place. Thus, the present study was aimed to verify the ability of boron to modulate the ferroptotic process in HepG2 cells, a model of hepatocellular carcinoma. Our results indicate that-when used at high, pharmacological concentrations-BA can increase intracellular ROS, glutathione, and TBARS levels, and enhance ferroptosis induced by RSL3 and erastin. Also, high BA concentrations can directly induce ferroptosis, and such BA-induced ferroptosis can add to the cytotoxic effects of anticancer drugs sorafenib, doxorubicin and cisplatin. These observations suggest that BA could be exploited as a chemo-sensitizer agent in order to overcome cancer drug resistance in selected conditions. However, the possibility of reaching suitably high concentrations of BA in the tumor microenvironment will need to be further investigated.


Assuntos
Antineoplásicos , Ferroptose , Neoplasias Hepáticas , Humanos , Morte Celular , Espécies Reativas de Oxigênio/metabolismo , Boro/farmacologia , Boro/uso terapêutico , Peroxidação de Lipídeos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Glutationa/metabolismo , Microambiente Tumoral
5.
J Funct Biomater ; 13(4)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36547525

RESUMO

INTRODUCTION: The UVC-irradiation ("UV-photofunctionalization") of titanium dental implants has proved to be capable of removing carbon contamination and restoring the ability of titanium surfaces to attract cells involved in the process of osteointegration, thus significantly enhancing the biocompatibility of implants and favoring the post-operative healing process. To what extent the effect of UVC irradiation is dependent on the type or the topography of titanium used, is still not sufficiently established. OBJECTIVE: The present study was aimed at analyzing the effects of UV-photofunctionalization on the TiO2 topography, as well as on the gene expression patterns and the biological activity of osteogenic cells, i.e., osteogenic precursors cultured in vitro in the presence of different titanium specimens. METHODOLOGY: The analysis of the surface roughness was performed by atomic force microscopy (AFM) on machined surface grade 2, and sand-blasted/acid-etched surface grades 2 and 4 titanium specimens. The expression of the genes related with the process of healing and osteogenesis was studied in the MC3T3-E1 pre-osteoblastic murine cells, as well as in MSC murine stem cells, before and after exposure to differently treated TiO2 surfaces. RESULTS: The AFM determinations showed that the surface topographies of titanium after the sand-blasting and acid-etching procedures, look very similar, independently of the grade of titanium. The UVC-irradiation of the TiO2 surface was found to induce an increase in the cell survival, attachment and proliferation, which was positively correlated with an increased expression of the osteogenesis-related genes Runx2 and alkaline phosphatase (ALP). CONCLUSION: Overall, our findings expand and further support the current view that UV-photofunctionalization can indeed restore biocompatibility and osteointegration of TiO2 implants, and suggest that this at least in part occurs through a stimulation of the osteogenic differentiation of the precursor cells.

6.
Front Oncol ; 12: 920316, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669424

RESUMO

Cisplatin (CDDP) is currently employed for the treatment of several solid tumors, but cellular heterogeneity and the onset of drug resistance dictate that suitable biomarkers of CDDP sensitivity are established. Studies on triple-negative breast cancer (TNBC) have recently confirmed the involvement of gamma-glutamyltransferase 1 (GGT1), whose enzyme activity expressed at the cell surface favors the cellular resupply of antioxidant glutathione (GSH) thus offering cancer cells protection against the prooxidant effects of CDDP. However, an additional well-established mechanism depends on GGT1-mediated matabolism of extracellular GSH. It was in fact shown that glycyl-cysteine - the dipeptide originated by GGT1-mediated GSH metabolism at the cell surface - can promptly form adducts with exogenous CDDP, thus hindering its access to the cell, interactions with DNA and overall cytotoxicity. Both mechanisms: mainainance of intracellular GSH levels plus extracellular CDDP detoxication are likely concurring to determine GGT1-dependent CDDP resistance.

7.
Clin Exp Immunol ; 209(3): 305-310, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-35732270

RESUMO

Glutathione S-transferase omega-1 (GSTO1-1) is a cytosolic enzyme involved in the modulation of critical inflammatory pathways as well as in cancer progression. Auto-antibodies against GSTO1-1 were detected in the serum of patients with esophageal squamous cell carcinoma and were proposed as potential biomarkers in the early detection of the disease. Our findings show that anti-GSTO1-1 antibodies can be found in a variety of inflammatory diseases, including autoimmune rheumatoid arthritis, infectious SARS-CoV-2, and trichinellosis. Our findings strongly suggest that anti-GSTO1-1 antibodies may be a marker of tissue damage/inflammation rather than a specific tumor-associated biomarker.


Assuntos
COVID-19 , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Biomarcadores Tumorais , Glutationa Transferase , Humanos , Inflamação , SARS-CoV-2
9.
Antioxidants (Basel) ; 10(4)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810295

RESUMO

Monocytes/macrophages and vascular smooth muscle cells (vSMCs) are the main cell types implicated in atherosclerosis development, and unlike other mature cell types, both retain a remarkable plasticity. In mature vessels, differentiated vSMCs control the vascular tone and the blood pressure. In response to vascular injury and modifications of the local environment (inflammation, oxidative stress), vSMCs switch from a contractile to a secretory phenotype and also display macrophagic markers expression and a macrophagic behaviour. Endothelial dysfunction promotes adhesion to the endothelium of monocytes, which infiltrate the sub-endothelium and differentiate into macrophages. The latter become polarised into M1 (pro-inflammatory), M2 (anti-inflammatory) or Mox macrophages (oxidative stress phenotype). Both monocyte-derived macrophages and macrophage-like vSMCs are able to internalise and accumulate oxLDL, leading to formation of "foam cells" within atherosclerotic plaques. Variations in the levels of nitric oxide (NO) can affect several of the molecular pathways implicated in the described phenomena. Elucidation of the underlying mechanisms could help to identify novel specific therapeutic targets, but to date much remains to be explored. The present article is an overview of the different factors and signalling pathways implicated in plaque formation and of the effects of NO on the molecular steps of the phenotypic switch of macrophages and vSMCs.

10.
Mater Sci Eng C Mater Biol Appl ; 121: 111823, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33579466

RESUMO

The aim of this study was to evaluate the effectiveness of UVC photofunctionalization in removing the surface carbon contamination compounds from the most used surfaces utilized in dental implantology: TiO2, ZrO2 and PEEK. Machined samples were treated by UVC light in an Ushio Therabeam SuperOsseo® device for 12 min each. Non-treated disks were set as controls. X-Ray photoelectron spectroscopy was used to monitor the changes in surface chemical composition. Photofunctionalization of the PEEK material has been analyzed here for the first time. The removal of hydrocarbons allowed by UVC irradiation was nearly twofold, and irradiation simultaneously led to an increase of H-O-C=O bonds. For TiO2 and ZrO2 surfaces, the loss of hydrocarbons detected after UVC irradiation was threefold. The chemical stability of surfaces when left at atmospheric conditions after UVC irradiation was monitored during 10 weeks. After 6 weeks the carbon contamination on TiO2 surfaces returned to the level before UVC treatment, while for ZrO2 and PEEK it was 75% and 60% of its initial value, respectively. None of the materials tested displayed any toxicity towards human fibroblasts cultured in direct contact with them, confirming their potential employment for manufacturing of implant abutments. UVC photofunctionalization can be thus regarded as a valid method in order to reverse the detrimental effects of biological ageing of implant surfaces.


Assuntos
Envelhecimento , Titânio , Benzofenonas , Humanos , Cetonas , Microscopia Eletrônica de Varredura , Polietilenoglicóis , Polímeros , Propriedades de Superfície
11.
J Cyst Fibros ; 20(6): 1053-1061, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33583732

RESUMO

BACKGROUND: Glutathione S-transferase omega-1 (GSTO1-1) is a cytosolic enzyme that modulates the S-thiolation status of intracellular factors involved in cancer cell survival or in the inflammatory response. Studies focusing on chronic obstructive pulmonary disease (COPD) have demonstrated that GSTO1-1 is detectable in alveolar macrophages, airway epithelium and in the extracellular compartment, where its functions have not been completely understood. Moreover GSTO1-1 polymorphisms have been associated with an increased risk to develop COPD. Against this background, the aim of this study was to evaluate GSTO1-1 levels and its polymorphisms in cystic fibrosis (CF) patients. METHODS: Clinical samples from a previous study published by our groups were analyzed for GSTO1-1 levels and polymorphisms. For comparison, a model of lung inflammation in CFTR-knock out mice was also used. RESULTS: Our data document that soluble GSTO1-1 can be found in the airways of CF patients and correlates with inflammatory parameters such as neutrophilic elastase and the chemokine IL-8. A negative correlation was found between GSTO1-1 levels and the spirometric parameter FEV1 and the FEV1/FVC ratio. Additionally, the A140D polymorphism of GSTO1-1 was associated with lower levels of the antiinflammatory mediators PGE2 and 15(S)-HETE, and with lower values of the FEV1/FVC ratio in CF subjects with the homozygous CFTR ΔF508 mutation. CONCLUSIONS: Our data suggest that extracellular GSTO1-1 and its polymorphysms could have a biological and clinical significance in CF. Pathophysiological functions of GSTOs are far from being completely understood, and more studies are required to understand the role(s) of extracellular GSTO1-1 in inflamed tissues.


Assuntos
Proteínas de Transporte/genética , Fibrose Cística/enzimologia , Fibrose Cística/genética , Glutationa Transferase/genética , Polimorfismo de Nucleotídeo Único , Animais , Fibrose Cística/fisiopatologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Testes de Função Respiratória , Índice de Gravidade de Doença
12.
Free Radic Biol Med ; 160: 807-819, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32916278

RESUMO

Having long been regarded as just a member in the cellular antioxidant systems, as well as a clinical biomarker of hepatobiliary diseases and alcohol abuse, gamma-glutamyltransferase (GGT) enzyme activity has been highlighted by more recent research as a critical factor in modulation of redox equilibria within the cell and in its surroundings. Moreover, due to the prooxidant reactions which can originate during its metabolic function in selected conditions, experimental and clinical studies are increasingly involving GGT in the pathogenesis of several important disease conditions, such as atherosclerosis, cardiovascular diseases, cancer, lung inflammation, neuroinflammation and bone disorders. The present article is an overview of the laboratory findings that have prompted an evolution in interpretation of the significance of GGT in human pathophysiology.


Assuntos
Neoplasias , gama-Glutamiltransferase , Antioxidantes , Humanos , Oxirredução , Espécies Reativas de Oxigênio , gama-Glutamiltransferase/metabolismo
15.
Toxicol Sci ; 177(2): 476-482, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31388672

RESUMO

Asbestos is the main causative agent of malignant pleural mesothelioma. The variety known as crocidolite (blue asbestos) owns the highest pathogenic potential, due to the dimensions of its fibers as well as to its content of iron. The latter can in fact react with macrophage-derived hydrogen peroxide in the so called Fenton reaction, giving rise to highly reactive and mutagenic hydroxyl radical. On the other hand, hydroxyl radical can as well originate after thiol-dependent reduction of iron, a process capable of starting its redox cycling. Previous studies showed that glutathione (GSH) is one such thiol, and that cellular gamma-glutamyltransferase (GGT) can efficiently potentiate GSH-dependent iron redox cycling and consequent oxidative stress. As GGT is expressed in macrophages and is released upon their activation, the present study was aimed at verifying the hypothesis that GSH/GGT-dependent redox reactions may participate in the oxidative stress following the activation of macrophages induced by crocidolite asbestos. Experiments in acellular systems confirmed that GGT-mediated metabolism of GSH can potentiate crocidolite-dependent production of superoxide anion, through the production of highly reactive dipeptide thiol cysteinyl-glycine. Cultured THP-1 macrophagic cells, as well as isolated monocytes obtained from healthy donors and differentiated to macrophages in vitro, were investigated as to their expression of GGT and the effects of exposure to crocidolite. The results show that crocidolite asbestos at subtoxic concentrations (50-250 ng/1000 cells) can upregulate GGT expression, which raises the possibility that macrophage-initiated, GSH/GGT-dependent pro-oxidant reactions may participate in the pathogenesis of tissue damage and inflammation consequent to crocidolite intoxication.


Assuntos
Asbesto Crocidolita , Amianto , Asbesto Crocidolita/toxicidade , Humanos , Macrófagos , Espécies Reativas de Oxigênio , gama-Glutamiltransferase
17.
Sci Rep ; 9(1): 891, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696905

RESUMO

L-γ-Glutamyl-p-nitroanilide (GPNA) is widely used to inhibit the glutamine (Gln) transporter ASCT2, but recent studies have demonstrated that it is also able to inhibit other sodium-dependent and independent amino acid transporters. Moreover, GPNA is a well known substrate of the enzyme γ-glutamyltransferase (GGT). Our aim was to evaluate the effect of GGT-mediated GPNA catabolism on cell viability and Gln transport. The GGT-catalyzed hydrolysis of GPNA produced cytotoxic effects in lung cancer A549 cells, resulting from the release of metabolite p-nitroaniline (PNA) rather than from the inhibition of Gln uptake. Interestingly, compounds like valproic acid, verapamil and reversan were able to increase the cytotoxicity of GPNA and PNA, suggesting a key role of intracellular detoxification mechanisms. Our data indicate that the mechanism of action of GPNA is more complex than believed, and further confirm the poor specificity of GPNA as an inhibitor of Gln transport. Different factors may modulate the final effects of GPNA, ranging from GGT and ASCT2 expression to intracellular defenses against xenobiotics. Thus, other strategies - such as a genetic suppression of ASCT2 or the identification of new specific inhibitors - should be preferred when inhibition of ASCT2 function is required.


Assuntos
Glutamina/análogos & derivados , Neoplasias/metabolismo , gama-Glutamiltransferase/metabolismo , Acetilcisteína/metabolismo , Acetilcisteína/farmacologia , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Ativação Enzimática , Glutamina/efeitos adversos , Glutamina/química , Glutamina/metabolismo , Glutamina/toxicidade , Humanos , Hidrólise , Desintoxicação Metabólica Fase I , Espécies Reativas de Oxigênio/metabolismo
18.
Life Sci ; 203: 27-38, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29660434

RESUMO

AIMS: Beclomethasone/formoterol (BDP/FOR) has been reported to be more effective than its separate components in airway disease control and in airway inflammation improvement. However, BDP/FOR effects on cytokine-induced inflammation in structural cells have not been described and whether these effects occur in a cell- and mediator-dependent manner has not been fully elucidated. We sought to evaluate BDP and/or FOR effects on endothelial ICAM-1, E-selectin, IL-8 and on bronchial epithelial ICAM-1 and IL-8. Specific intracellular signaling pathways were also investigated. MATERIALS AND METHODS: Surface adhesion molecule expression and IL-8 release induced by TNF-alpha were measured by ELISA. Intracellular signaling pathways were investigated by a) EMSA and Western blot analysis to evaluate NF-κB DNA-binding and MAPK-p38 phosphorylation; b) PDTC/SB203580 as NF-κB/p38 inhibitors; c) forskolin/H-89 as PKA activator/inhibitor. KEY FINDINGS: BDP/FOR additively reduced endothelial E-selectin and IL-8 as well as bronchial epithelial ICAM-1 and IL-8. BDP/FOR and SB203580 showed the highest inhibitory effect on epithelial IL-8, whereas endothelial ICAM-1 was never affected by BDP/FOR and PDTC. TNF-alpha-induced NF-κB DNA-binding and MAPK-p38 phosphorylation were not influenced by BDP/FOR. Forskolin mimicked FOR effects; H-89 partially reversed the BDP/FOR inhibition in a mediator-dependent manner. SIGNIFICANCE: The BDP/FOR inhibition degree was related to the inflammatory mediator- and cell-type considered. FOR additively enhanced BDP effects by partially involving both dependent- and independent-PKA mechanisms. Our results might contribute to highlight the strong relationship between specific molecular pathways and different sensitivity to the corticosteroid/ß2-agonist effects and to clarify the molecular mechanisms underlying the BDP/FOR anti-inflammatory activity in vivo.


Assuntos
Beclometasona/farmacologia , Brônquios/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Sinergismo Farmacológico , Fumarato de Formoterol/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , NF-kappa B/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Anti-Inflamatórios/farmacologia , Brônquios/metabolismo , Broncodilatadores/farmacologia , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos
19.
Theranostics ; 8(21): 6035-6037, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30613280

RESUMO

The recently reported results of Lu et al. (Theranostics. 2018; 8: 1312-26) - highlighting GLUT1 expression as a marker for sensitivity of gastric cancer cells to therapeutic doses of ascorbate - are discussed in the light of additional factors potentially affecting the underlying processes, such as the concomitant expression of membrane gamma-glutamyltransferase activity, the resistance of cancer cells to oxidative injury and other known biomarkers.


Assuntos
Neoplasias Gástricas , Ácido Ascórbico , Linhagem Celular Tumoral , Humanos , Oxaliplatina , Oxirredução
20.
Sci Rep ; 7(1): 12003, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28931896

RESUMO

Among the risk factors associated to metabolic syndrome (MetS), hypertension shows the highest prevalence in Italy. We investigated the relationship between the newly identified serum γ-glutamyltransferase (GGT) fractions, b- s- m- f-GGT, and risk factors associated to MetS in hypertensive patients. A total of ninety-five consecutive hypertensive patients were enrolled. GGT fractions were analysed by gel-filtration chromatography, and hepatic steatosis was evaluated by ultrasound. MetS was diagnosed in 36% of patients. Considering the whole group, b- and f-GGT showed the highest positive correlation with BMI, glucose, triglycerides and insulin, and the highest negative correlation with HDL cholesterol. While both serum triglycerides and insulin were independently associated with b-GGT levels, only triglycerides were independently associated with f-GGT. The values of b-GGT activity increased with steatosis grade (g0 = 1.19; g2 = 3.29; ratio g2/g0 = 2.75, p < 0.0001 linear trend). Patients with MetS showed higher levels of b-GGT, m-GGT and f-GGT [median (25th-75th) U/L: 3.19 (1.50-6.59); 0.55 (0.26-0.81); 10.3 (9.1-13.6); respectively] as compared to subjects presenting with one or two MetS criteria [1.75 (0.95-2.85), p < 0.001; 0.33 (0.19-0.60), p < 0.05; 8.8 (7.0-10.6), p < 0.001]. Our data point to a potential role for b- and f-GGT fractions in identifying MetS patients among hypertensive subjects, thus providing a minimally invasive blood-based tool for MetS diagnosis.


Assuntos
Fígado Gorduroso/sangue , Hipertensão/sangue , Síndrome Metabólica/sangue , gama-Glutamiltransferase/sangue , Adulto , Idoso , Glicemia/metabolismo , Índice de Massa Corporal , Fígado Gorduroso/diagnóstico , Fígado Gorduroso/epidemiologia , Feminino , Humanos , Hipertensão/diagnóstico , Hipertensão/epidemiologia , Itália/epidemiologia , Masculino , Síndrome Metabólica/diagnóstico , Síndrome Metabólica/epidemiologia , Prevalência , Fatores de Risco , Triglicerídeos/sangue , gama-Glutamiltransferase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA