Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Curr Top Med Chem ; 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28816107

RESUMO

Herein is described in silico repositioning, design, synthesis, biological evaluation and structure-activity relationship (SAR) of an original class of anti-inflammatory agents based on a polyaromatic pharmacophore structurally related to bisacodyl (BSL) drug used in therapeutic as laxative. We describe the potential of TOMOCOMD-CARDD methods to find out new anti-inflammatory drug-like agents from a diverse series of compounds using the total and local atom based bilinear indices as molecular descriptors. The models obtained were validated by biological studies, identifying BSL as the first anti-inflammatory lead-like using in silico repurposing from commercially available drugs. Several biological in vitro and in vivo assays were performed in order to understand its mechanism of action. A set of analogues of BSL was prepared using low-cost synthetic procedures and further biologically investigated in zebrafish models. Compound 5c and 7e exhibited the best antiinflammatory activities and represent new promising anti-inflammatory agents for further preclinical development.

2.
Parasitol Res ; 112(4): 1523-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23338979

RESUMO

Compound 1-methyl-7-nitro-4-(5-(piperidin-1-yl)pentyl)-3,4-dihydroquinoxalin-2(1H)-one (VAM2-6) was evaluated against a blood-induced infection with chloroquine-sensitive Plasmodium yoelii yoelii lethal strain in CD1 mice in a 4-day test scheme. LD50 of the compound was 56.51 mg/kg and LD10 was 20.58 mg/kg (taken as the highest dose). Animals were treated by oral gavage of 20, 10, and 5 mg/kg. Mice in the untreated control group showed a progressively increasing parasitemia leading to mouse death on 6 days post-infection; in this group, all mice showed parasites in the blood on the fifth day of sampling; the mean parasitemia on that day was 19.4%. A 4-day dosage of 20 mg/kg of VAM2-6 showed a 97% chemosuppression of total parasitemia on the fifth day, a 28 days survival time, and 20% of cured animals. A 4-day dosage of 10 and 5 mg/kg showed 85 and 37%, respectively, chemosuppression of total parasitemia on the fifth day; but all mice died from days 6 to 9 post-infection with increasing parasitemia. Mice treated with chloroquine at 5 mg/kg survived during the experiment. The results obtained in this study showed that the infection outcome of P. yoelii yoelii-infected mice is affected by VAM2-6 compound by slowing down the parasite replication, retarding the patency time, and increasing their survival time. Although compound VAM2-6 was active at higher doses than chloroquine, these results leaves a door open to the study of its structure in order to improve its antimalarial activity.


Assuntos
Antimaláricos/uso terapêutico , Malária/tratamento farmacológico , Plasmodium yoelii/efeitos dos fármacos , Quinoxalinas/uso terapêutico , Administração Oral , Animais , Bioensaio , Modelos Animais de Doenças , Masculino , Camundongos , Análise de Sobrevida , Resultado do Tratamento
3.
Bioorg Med Chem ; 12(24): 6351-69, 2004 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-15556754

RESUMO

This paper describes the significance interpretation, comparison to other molecular descriptors, and QSPR/QSAR applications of a new set of molecular descriptors: atom, atom type, and total molecular quadratic indices. The features of the kth total and local quadratic indices are illustrated by examples of various types of molecular structures, including chain lengthening, branching, heteroatoms content, and multiple bonds. The linear independence of the local (atom type) quadratic indices to others 0D, 1D, 2D, and 3D molecular descriptors is demonstrated by using principal component analysis for 42 heterogeneous molecules. It is concluded that the local quadratic indices are independent indices containing important structural information to be used in QSPR/QSAR and drug design studies. In this sense, molecular quadratic indices were used to the description and prediction of the boiling point of 28 alkyl alcohols and to the modeling of the partition coefficient (logP), specific rate constant (logk), and antibacterial activity of 2-furylethylene derivatives. These models were statistically significant and showed very good stability to data variation in leave-one-out (LOO) cross-validation experiment. The comparison with the other approaches also revealed good behaviors of our method in this QSAR study.


Assuntos
Modelos Moleculares , Relação Quantitativa Estrutura-Atividade , Álcoois/química , Antibacterianos/química , Etilenos/química , Modelos Teóricos
4.
Bioorg Med Chem ; 12(20): 5331-42, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15388160

RESUMO

Quadratic indices of the 'molecular pseudograph's atom adjacency matrix' have been generalized to codify chemical structure information for chiral drugs. These 3D-chiral quadratic indices make use of a trigonometric 3D-chirality correction factor. These indices are nonsymmetric and reduced to classical (2D) descriptors when symmetry is not codified. By this reason, it is expected that they will be useful to predict symmetry-dependent properties. 3D-Chirality quadratic indices are real numbers and thus, can be easily calculated in TOMOCOMD-CARDD software. These descriptors circumvent the inability of conventional 2D quadratic indices (Molecules 2003, 8, 687-726. http://www.mdpi.org) and other (chirality insensitive) topological indices to distinguish sigma-stereoisomers. In this paper, we extend our earlier work by applying 3D-chirality quadratic indices to two data sets containing chiral compounds. Consequently, in order to test the potential of this novel approach in drug design we have modelled the angiotesin-converting enzyme inhibitory activity of perindoprilate's sigma-stereoisomers combinatorial library. Two linear discriminant analysis (LDA) models were obtained. The first one model was performed considering all data set as training series and classifies correctly 88.89% of active compounds and 100.00% of nonactive one for a global good classification of 96.87%. The second one LDA-QSAR model classified correctly 83.33% of the active and 100.00% of the inactive compounds in a training set, result that represent a total of 95.65% accuracy in classification. On the other hand, the model classifies 100.00% of these compounds in the test set. Similar predictive behaviour was observed in a leave-one-out cross-validation procedure for both equations. Canonical regression analysis corroborated the statistical quality of these models (R(can) of 0.82 and of 0.76, respectively) and was also used to compute biology activity canonical scores for each compound. Finally, prediction of the biological activities of chiral 3-(3-hydroxyphenyl)piperidines, which are sigma-receptor antagonists, by linear multiple regression analysis was carried out. Two statistically significant QSAR models were obtained (R2=0.940, s=0.270 and R2=0.977, s=0.175). These models showed high stability to data variation in the leave-one-out cross-validation procedure (q2=0.912, scv=0.289 and q2=0.957, scv=0.211). The results of this study compare favourably with those obtained with other chirality descriptors applied to the same data set. The 3D-chiral TOMOCOMD-CARDD approach provides a powerful alternative to 3D-QSAR.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/classificação , Receptores sigma/antagonistas & inibidores , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Biologia Computacional , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade , Receptores sigma/metabolismo , Estereoisomerismo
5.
Molecules ; 9(12): 1100-23, 2004 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-18007507

RESUMO

In this paper we describe the application in QSPR/QSAR studies of a new group of molecular descriptors: atom, atom-type and total linear indices of the molecular pseudograph's atom adjacency matrix. These novel molecular descriptors were used for the prediction of boiling point and partition coefficient (log P), specific rate constant (log k), and antibacterial activity of 28 alkyl-alcohols and 34 derivatives of 2-furylethylenes,respectively. For this purpose two quantitative models were obtained to describe the alkyl-alcohols' boiling points. The first one includes only two total linear indices and showed a good behavior from a statistical point of view (R(2) = 0.984, s = 3.78, F = 748.57,q(2) = 0.981, and s(cv) = 3.91). The second one includes four variables [3 global and 1 local(heteroatom) linear indices] and it showed an improvement in the description of physical property (R(2) = 0.9934, s = 2.48, F = 871.96, q(2) = 0.990, and s(cv) = 2.79). Later, linear multiple regression analysis was also used to describe log P and log k of the 2-furyl-ethylenes derivatives. These models were statistically significant [(R(2) = 0.984, s = 0.143, and F = 113.38) and (R(2) = 0.973, s = 0.26 and F = 161.22), respectively] and showed very good stability to data variation in leave-one-out (LOO) cross-validation experiment [(q(2) = 0.93.8 and scv = 0.178) and (q(2) = 0.948 and s(cv) = 0.33), respectively]. Finally, a linear discriminant model for classifying antibacterial activity of these compounds was also achieved with the use of the atom and atom-type linear indices. The global percent of good classification in training and external test set obtained was of 94.12% and 100.0%, respectively. The comparison with other approaches (connectivity indices, total and local spectral moments, quantum chemical descriptors, topographic indices and E- state/biomolecular encounter parameters) reveals a good behavior of our method. The approach described in this paper appears to be a very promising structural invariant, useful for QSPR/QSAR studies and computer-aided "rational" drug design.


Assuntos
Álcoois/química , Etilenos/química , Modelos Químicos , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade , Antibacterianos/química , Antibacterianos/classificação , Desenho de Fármacos , Software , Temperatura de Transição
6.
Molecules ; 9(12): 1124-47, 2004 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-18007508

RESUMO

This report describes a new set of macromolecular descriptors of relevance to protein QSAR/QSPR studies, protein's quadratic indices. These descriptors are calculated from the macromolecular pseudograph's alpha-carbon atom adjacency matrix. A study of the protein stability effects for a complete set of alanine substitutions in Arc repressor illustrates this approach. Quantitative Structure-Stability Relationship (QSSR) models allow discriminating between near wild-type stability and reduced-stability A-mutants. A linear discriminant function gives rise to excellent discrimination between 85.4% (35/41)and 91.67% (11/12) of near wild-type stability/reduced stability mutants in training and test series, respectively. The model's overall predictability oscillates from 80.49 until 82.93, when n varies from 2 to 10 in leave-n-out cross validation procedures. This value stabilizes around 80.49% when n was > 6. Additionally, canonical regression analysis corroborates the statistical quality of the classification model (Rcanc = 0.72, p-level <0.0001). This analysis was also used to compute biological stability canonical scores for each Arc A-mutant. On the other hand, nonlinear piecewise regression model compares favorably with respect to linear regression one on predicting the melting temperature (tm)of the Arc A-mutants. The linear model explains almost 72% of the variance of the experimental tm (R = 0.85 and s = 5.64) and LOO press statistics evidenced its predictive ability (q2 = 0.55 and scv = 6.24). However, this linear regression model falls to resolve t(m) predictions of Arc A-mutants in external prediction series. Therefore, the use of nonlinear piecewise models was required. The tm values of A-mutants in training (R = 0.94) and test(R = 0.91) sets are calculated by piecewise model with a high degree of precision. A break-point value of 51.32 degrees C characterizes two mutants' clusters and coincides perfectly with the experimental scale. For this reason, we can use the linear discriminant analysis and piecewise models in combination to classify and predict the stability of the mutants' Arc homodimers. These models also permit the interpretation of the driving forces of such a folding process. The models include protein's quadratic indices accounting for hydrophobic (z1), bulk-steric (z2), and electronic (z3) features of the studied molecules. Preponderance of z1 and z3 over z2 indicates the higher importance of the hydrophobic and electronic side chain terms in the folding of the Arc dimer. In this sense, developed equations involve short-reaching (k < or = 3), middle- reaching (3 < k < or = 7) and far-reaching (k= 8 or greater) z1, 2, 3-protein's quadratic indices. This situation points to topologic/topographic protein's backbone interactions control of the stability profile of wild-type Arc and its A-mutants. Consequently, the present approach represents a novel and very promising way to mathematical research in biology sciences.


Assuntos
Alanina , Substituição de Aminoácidos , Engenharia de Proteínas/métodos , Relação Quantitativa Estrutura-Atividade , Proteínas Repressoras/química , Proteínas Virais Reguladoras e Acessórias/química , Alanina/genética , Substituição de Aminoácidos/genética , Animais , Biologia Computacional/métodos , Biologia Computacional/tendências , Dimerização , Humanos , Modelos Moleculares , Valor Preditivo dos Testes , Engenharia de Proteínas/tendências , Dobramento de Proteína , Proteínas Repressoras/genética , Estereoisomerismo , Proteínas Virais Reguladoras e Acessórias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA