Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255930

RESUMO

We comprehensively evaluated the expression of therapeutically targetable immune checkpoint molecules involved in celiac disease (CD). We have focused on the alteration of the CD200/CD200R pathway and Elafin expression in celiac disease and discussed their roles in regulating the immune response. There are limited data related to the expression or function of these molecules in celiac disease. This finding could significantly contribute to the understanding of the clinical manifestation of CD. CD200, CD200R and Elafin distributions were determined by ELISA and immunohistochemistry analyses in serum and biopsies of CD patients. Analyses of Th1 and Th17 cytokines were determined. PCR amplification of a fragment of the PI3 gene was carried out using genomic DNA isolated from whole blood samples of the study subjects. Different aliquots of the PCR reaction product were subjected to RFLP analysis for SNP genotyping and detection. We characterized the expression and function of the CD200-CD200R axis and PI3 in celiac disease. A significantly higher level of soluble CD200 and CD200R and lower expression of PI3 in serum of CD patients was observed compared to healthy controls. Consistent with our results, CD200 expression is regulated by IFN-gamma. Interaction of CD200/CD200R leads to production of type-Th1 and -Th17 cytokines. Regarding the PI3 genotype, the CT genotype proportion SNP rs1733103 and the GG genotype SNP rs41282752 were predominant in CD patients. SNP rs1733103 showed a significant association between the SNP variables and CD. In celiac disease the immune checkpoint is compromised or dysregulated, which can contribute to inflammation and the autoimmunity process. The study of these checkpoint points will lead to the development of targeted therapies aimed at restoring immunological balance in CD. Specific coding regions of the PI3 gene-splice variants predispose the Elafin protein, both at the transcriptional and post-translational levels, to modify its expression and function, resulting in reduced differential functional protein levels in patients with active celiac disease.


Assuntos
Doença Celíaca , Proteínas de Checkpoint Imunológico , Humanos , Elafina , Doença Celíaca/genética , Genótipo , Citocinas/genética
2.
Front Immunol ; 12: 678400, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220824

RESUMO

Background: We have focused on the alteration of the PD-1/PD-L1 pathway in celiac disease and discussed the roles of the PD1 pathway in regulating the immune response. We explored the idea that the altered mRNA splicing process in key regulatory proteins could represent a novel source to identify diagnostic, prognostic, and therapeutic targets in celiac disease. Methods: We characterized the PD1 mRNA variants' profile in CD patients and in response to gluten peptides' incubation after in vitro experiments. Total RNA from whole blood was isolated, and the coding region of the human PD-1 mRNA was amplified by cDNA PCR. Results: PCR amplification of the human PD-1 coding sequence revealed an association between the over-expression of the sPD-1 protein and the PD-1Δex3 transcript in celiac disease. Thus, we have found three novel alternative spliced isoforms, two of which result in a truncated protein and the other isoform with a loss of 14 aa of exon 2 and complete exon 3 (Δ3) which could encode a new soluble form of PD1 (sPD-1). Conclusions: Our study provides evidence that dietary gluten can modulate processes required for cell homeostasis through the splicing of pre-mRNAs encoding key regulatory proteins, which represents an adaptive mechanism in response to different nutritional conditions.


Assuntos
Processamento Alternativo , Doença Celíaca/genética , Regulação da Expressão Gênica , Receptor de Morte Celular Programada 1/genética , Antígeno B7-H1/metabolismo , Biomarcadores , Doença Celíaca/diagnóstico , Doença Celíaca/metabolismo , Doença Celíaca/terapia , Criança , Citocinas/biossíntese , Suscetibilidade a Doenças , Feminino , Humanos , Imuno-Histoquímica , Interferon gama/metabolismo , Masculino , Peptídeos/imunologia , Peptídeos/metabolismo , Polimorfismo de Nucleotídeo Único , Prognóstico , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais
4.
Arch Immunol Ther Exp (Warsz) ; 66(6): 423-430, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30167716

RESUMO

Celiac disease is an autoimmune condition triggered by the ingestion of gluten, the protein fraction of wheat, barley and rye. It is not simply an intestinal disease; it is multifactorial caused by many different genetic factors acting together with non-genetic causes. Similar to other autoimmune diseases, celiac disease is a polygenic disorder for which the major histocompatibility complex locus is the most important genetic factor, and is the result of an immune response to self-antigens leading to tissue destruction and the autoantibodies production. Celiac disease exemplifies how an illness can have autoimmune-like features having to be driven by exogenous antigen and how can be reasonably considered as a model of organ-specific autoimmunity.


Assuntos
Doença Celíaca/imunologia , Glutens/imunologia , Intestinos/patologia , Animais , Autoanticorpos/metabolismo , Autoantígenos/imunologia , Autoimunidade , Modelos Animais de Doenças , Humanos , Complexo Principal de Histocompatibilidade/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA