Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Food Sci Technol ; 57(10): 3720-3730, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32903992

RESUMO

Ultrasound-assisted extraction (UAE) was used to extract anthocyanins, antioxidants and phenolic compounds from butterfly pea petals, as an alternative to traditional methods. Taguchi method with three factors: extraction time (30, 45, 60 min), temperature (40, 60, 80 °C) and liquid-solid ratio (5, 7.5, 10 mL distilled water/mg butterfly pea) was used to obtain the high extraction yield. Grey relational analysis was employed to convert multi-response problem into single response optimization. The high extraction efficiency could be achieved at optimal parameter condition using 45 min of extraction time, 40 °C and 10 ml distilled water/mg butterfly pea. Liquid-solid ratio exhibited the highest contribution for anthocyanin and total phenolic content. A high temperature of ultrasonication resulted in a negative effect on antioxidant capacity and total phenolic content. The findings from this study indicated that the UAE process optimization would be an efficient and sustainable method for the preparation of bioactive compounds from medical plants with saving of reaction time and cost in which extraction yields of antioxidant capacity and total phenolic content were also increased. The color response analysis results suggested that the gelatin film incorporated with butterfly pea extract can be potentially used as pH-indicator for detecting food spoilage for intelligent packaging.

2.
Polymers (Basel) ; 10(5)2018 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-30966516

RESUMO

Conventional shape memory polymers (SMPs) can memorize their permanent shapes. However, these SMPs cannot reconfigure their original shape to obtain a desirable geometry owing to permanent chemically or physically crosslinked networks. To overcome this limitation, novel SMPs that can be reconfigured via bond exchange reactions (BERs) have been developed. In this study, polymer composites consisting of epoxy phenolic novolac (EPN) and bio-based cashew nut shell liquid (CNSL) reinforced by multi-walled carbon nanotubes (CNTs) were prepared. The obtained composites exhibited shape memory and self-welding properties, and their shapes could be reconfigured via BERs. Their shape memory mechanisms were investigated using variable-temperature Fourier transform infrared spectroscopy and dynamic mechanical analysis. The EPN/CNSL composite containing 0.3 wt % CNTs showed the highest shape fixity and shape recovery ratio. Furthermore, shape memory behavior induced by irradiation of near-infrared (NIR) light was also observed. All samples showed high shape recovery ratios of nearly 100% over five cycles, and increasing the CNT content shortened the recovery time remarkably. The ability of shape reconfiguration and stress relaxation affected the photo-induced shape memory properties of reshaped samples. Additionally, the self-welding properties were also influenced by stress relaxation. The hindrance of stress relaxation caused by the CNTs resulted in a decrease in adhesive fracture energy (Gc). However, the Gc values of EPN/CNSL composites were comparable to those of epoxy vitrimers. These results revealed that the material design concepts of thermal- and photo-induced shape memory, shape reconfiguration, and self-welding were combined in the EPN/CNSL composites, which could be feasible method for advanced smart material applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA