Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Pattern Anal Mach Intell ; 45(10): 12206-12221, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37339036

RESUMO

This paper proposes Panoptic Narrative Grounding, a spatially fine and general formulation of the natural language visual grounding problem. We establish an experimental framework for the study of this new task, including new ground truth and metrics. We propose PiGLET, a novel multi-modal Transformer architecture to tackle the Panoptic Narrative Grounding task, and to serve as a stepping stone for future work. We exploit the intrinsic semantic richness in an image by including panoptic categories, and we approach visual grounding at a fine-grained level using segmentations. In terms of ground truth, we propose an algorithm to automatically transfer Localized Narratives annotations to specific regions in the panoptic segmentations of the MS COCO dataset. PiGLET achieves a performance of 63.2 absolute Average Recall points. By leveraging the rich language information on the Panoptic Narrative Grounding benchmark on MS COCO, PiGLET obtains an improvement of 0.4 Panoptic Quality points over its base method on the panoptic segmentation task. Finally, we demonstrate the generalizability of our method to other natural language visual grounding problems such as Referring Expression Segmentation. PiGLET is competitive with previous state-of-the-art in RefCOCO, RefCOCO+ and RefCOCOg.

2.
IEEE Trans Pattern Anal Mach Intell ; 40(4): 819-833, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475046

RESUMO

We present Convolutional Oriented Boundaries (COB), which produces multiscale oriented contours and region hierarchies starting from generic image classification Convolutional Neural Networks (CNNs). COB is computationally efficient, because it requires a single CNN forward pass for multi-scale contour detection and it uses a novel sparse boundary representation for hierarchical segmentation; it gives a significant leap in performance over the state-of-the-art, and it generalizes very well to unseen categories and datasets. Particularly, we show that learning to estimate not only contour strength but also orientation provides more accurate results. We perform extensive experiments for low-level applications on BSDS, PASCAL Context, PASCAL Segmentation, and NYUD to evaluate boundary detection performance, showing that COB provides state-of-the-art contours and region hierarchies in all datasets. We also evaluate COB on high-level tasks when coupled with multiple pipelines for object proposals, semantic contours, semantic segmentation, and object detection on MS-COCO, SBD, and PASCAL; showing that COB also improves the results for all tasks.

3.
IEEE Trans Pattern Anal Mach Intell ; 39(1): 128-140, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26955014

RESUMO

We propose a unified approach for bottom-up hierarchical image segmentation and object proposal generation for recognition, called Multiscale Combinatorial Grouping (MCG). For this purpose, we first develop a fast normalized cuts algorithm. We then propose a high-performance hierarchical segmenter that makes effective use of multiscale information. Finally, we propose a grouping strategy that combines our multiscale regions into highly-accurate object proposals by exploring efficiently their combinatorial space. We also present Single-scale Combinatorial Grouping (SCG), a faster version of MCG that produces competitive proposals in under five seconds per image. We conduct an extensive and comprehensive empirical validation on the BSDS500, SegVOC12, SBD, and COCO datasets, showing that MCG produces state-of-the-art contours, hierarchical regions, and object proposals.

4.
IEEE Trans Pattern Anal Mach Intell ; 38(7): 1465-78, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26415155

RESUMO

This paper tackles the supervised evaluation of image segmentation and object proposal algorithms. It surveys, structures, and deduplicates the measures used to compare both segmentation results and object proposals with a ground truth database; and proposes a new measure: the precision-recall for objects and parts. To compare the quality of these measures, eight state-of-the-art object proposal techniques are analyzed and two quantitative meta-measures involving nine state of the art segmentation methods are presented. The meta-measures consist in assuming some plausible hypotheses about the results and assessing how well each measure reflects these hypotheses. As a conclusion of the performed experiments, this paper proposes the tandem of precision-recall curves for boundaries and for objects-and-parts as the tool of choice for the supervised evaluation of image segmentation. We make the datasets and code of all the measures publicly available.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA