Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 17(8): 7417-7430, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36877273

RESUMO

In the present study we evaluate the effect of superparamagnetic iron oxide nanoparticles (SPIONs) carrying usnic acid (UA) as chemical cargo on the soil microbial community in a dystrophic red latosol (oxysol). Herein, 500 ppm UA or SPIONs-framework carrying UA were diluted in sterile ultrapure deionized water and applied by hand sprayer on the top of the soil. The experiment was conducted in a growth chamber at 25 °C, with a relative humidity of 80% and a 16 h/8 h light-dark cycle (600 lx light intensity) for 30 days. Sterile ultrapure deionized water was used as the negative control; uncapped and oleic acid (OA) capped SPIONs were also tested to assess their potential effects. Magnetic nanostructures were synthesized by a coprecipitation method and characterized by scanning and transmission electron microscopy (SEM and TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), zeta potential, hydrodynamic diameter, magnetic measurements, and release kinetics of chemical cargo. Uncapped and OA-capped SPIONs did not significantly affect soil microbial community. Our results showed an impairment in the soil microbial community exposed to free UA, leading to a general decrease in negative effects on soil-based parameters when bioactive was loaded into the nanoscale magnetic carrier. Besides, compared to control, the free UA caused a significant decrease in microbial biomass C (39%), on the activity of acid protease (59%), and acid phosphatase (23%) enzymes, respectively. Free UA also reduced eukaryotic 18S rRNA gene abundance, suggesting a major impact on fungi. Our findings indicate that SPIONs as bioherbicide nanocarriers can reduce the negative impacts on soil. Therefore, nanoenabled biocides may improve agricultural productivity, which is important for food security due to the need of increasing food production.


Assuntos
Nanopartículas de Magnetita , Nanopartículas de Magnetita/química , Solo , Nanopartículas Magnéticas de Óxido de Ferro , Água
2.
Sci Total Environ ; 805: 150348, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34818759

RESUMO

A new highly sensitive, selective, and inexpensive electrochemical method has been developed for simultaneously detecting diethylstilbestrol (DES) and 17ß-estradiol (E2) in environmental samples (groundwater and lake water) using a graphite sensor modified by cerium oxide nanoparticles (CPE-CeO2 NPs). The developed sensor and the materials used in its preparation were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The ab initio simulation was used to evaluate the adsorption energies between both DES and E2 with the surface of the sensor. The peak current of oxidation of both hormones showed two regions of linearity. The region of greatest sensitivity was observed for the linear range of 10 nM-100 nM. The detection and quantification limits for this concentration range were 0.8/2.6 nM and 1.3/4.3 nM for DES and E2, respectively. The analytical performance of the developed method showed high sensitivity, precision, repeatability, reproducibility, and selectivity. The CPE-CeO2 NPs sensor was successfully applied to simultaneously detect DES and E2 in real samples with recovery levels above 98%.


Assuntos
Dietilestilbestrol , Técnicas Eletroquímicas , Eletrodos , Estradiol , Limite de Detecção , Reprodutibilidade dos Testes
3.
Sci Total Environ ; 749: 142385, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33370922

RESUMO

Excessive and indiscriminate use of the herbicide glyphosate (GLY) leaves the environment susceptible to its contamination. This work describes the development of a simple, inexpensive, and efficient electroanalytical method using graphite oxide paste electrode (GrO-PE) for the direct determination of GLY traces in groundwater samples, soybean extracts, and lettuce extracts. Under optimal experimental conditions, the developed sensor exhibited a linear response of the peak current intensity vs. the concentration, in the range of 1.8 × 10-5 to 1.2 × 10-3 mol L-1 for GLY. The limits of detection and quantification are 1.7 × 10-8 mol L-1 and 5.6 × 10-8 mol L-1, respectively. The methodology developed here demonstrated a strong analytical performance, with high reproducibility, repeatability, and precision. Moreover, it successfully avoided interference from other substances, showing high selectivity. The GrO-PE sensor was effectively applied to determine GLY traces in real samples with recovery rates ranging from 98% to 102%. Results showed that the GrO-PE is effective and useful for GLY detection, with the advantage of not involving laborious modifications and complicated handling, making it a promising tool for environmental analysis.

4.
J Agric Food Chem ; 68(40): 11105-11113, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32915575

RESUMO

The use of nano- and microparticles as a release system for agrochemicals has been increasing in agricultural sector. However, the production of eco-friendly and smart carriers that can be easily handled in the environment is still a challenge for this technology. In this context, we have developed a biodegradable release system for the herbicide atrazine with magnetic properties. Herein, we investigated the (a) physicochemical properties of the atrazine-loaded magnetic poly(ε-caprolactone) microparticles (MPs:ATZ), (b) in vitro release kinetic profile of the herbicide, and (c) phytotoxicity toward photosynthesis in the aquatic fern Azolla caroliniana. The encapsulation efficiency of the herbicide in the MPs:ATZ was ca. 69%, yielding spherical microparticles with a diameter of ca. 100 µm, a sustained-release profile, and easily manipulated with an external magnetic field. Also, phytotoxicity issues showed that the MPs:ATZ maintained their herbicidal activity via inhibition of PSII, showing lower toxicity compared with the nonencapsulated ATZ at 0.01 and 0.02 µmol·L-1. Therefore, this technology may conveniently promote a novel magnetic controlled release of the herbicide ATZ (with the potential to be collected from a watercourse) and act as a nutrient boost to the nontarget plant, with good herbicidal activity and reduced risk to the environment.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Herbicidas/química , Magnetismo/métodos , Complexo de Proteína do Fotossistema II/antagonistas & inibidores , Poliésteres/química , Atrazina/química , Sistemas de Liberação de Medicamentos/instrumentação , Liberação Controlada de Fármacos , Gleiquênias/efeitos dos fármacos , Gleiquênias/metabolismo , Herbicidas/farmacologia , Magnetismo/instrumentação , Nanopartículas/química , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Poliésteres/farmacologia
5.
J Hazard Mater ; 396: 122484, 2020 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-32302886

RESUMO

This work has assessed the impact of copper oxide nanoparticles (CuONPs), designed via green route, toward photosynthetic apparatus on aquatic photoautotrophic organisms. In order to filling knowledge gaps, in vitro and in vivo assays were performed, using cyanobacterial phycocyanin (C-PC) from Arthrospira platensis and Lemna valdiviana plants (duckweed), respectively. Impairment in light energy transfer became evident in C-PC exposed to CuONPs, giving rise to an increase of light absorption and a suppression of fluorescence emission. Fourier transform infrared spectroscopy (FTIR) results showed that C-PC structures might be altered by the nanoparticles, also revealed that CuONPs preferably interacts with -NH functional groups. The data also revealed that CuONPs affected the chlorophyll a content in duckweed leaves. In addition, photosystem II (PSII) performance was significantly affected by CuONPs, negatively impacting the PSII photochemical network. In summary, the results point out that, even eco-friendly designed, CuONPs may negatively affect the photosynthetic process when accumulated by aquatic photoautotrophs.


Assuntos
Cobre , Nanopartículas , Spirulina , Clorofila A , Cobre/toxicidade , Nanopartículas/toxicidade
6.
Ecotoxicol Environ Saf ; 180: 526-534, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31128550

RESUMO

With the continued increase of technological uses of cerium oxide nanoparticles (CeO2 NPs or nanoceria) and their unregulated disposal, the accumulation of nanoceria in the environment is inevitable. Concomitantly, atmospheric carbon dioxide (CO2) levels continue to rise, increasing the concentrations of bicarbonate ions in aquatic ecosystems. This study investigates the influence of CeO2 NPs (from 0 to 100 µgL-1) in the presence and absence of an elevated bicarbonate (HCO3-) ion concentration (1 mM), on vibrational biochemical parameters and photosystem II (PSII) activity in leaf discs of Salvinia auriculata. Fourier transform-infrared photoacoustic spectroscopy (FTIR-PAS) was capable of diagnostic use to understand biochemical and metabolic changes in leaves submitted to the CeO2 NPs and also detected interactive responses between CeO2 NPs and HCO3- exposure at the tissue level. The results showed that the higher CeO2 NPs levels in the presence of HCO3- increased the non-photochemical quenching (NPQ) and coefficient of photochemical quenching in dark (qPd) compared to the absence of HCO3. Moreover, the presence of HCO3- significantly decreased the NPQ at all levels of CeO2 NPs demonstrating that HCO3- exposure may change the non-radiative process involved in the operation of the photosynthetic apparatus. Overall, the results of this study are useful for providing baseline information on the interactive effects of CeO2 NPs and elevated HCO3- ion concentration on photosynthetic systems.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Dióxido de Carbono/análise , Cério/toxicidade , Clorofila A/metabolismo , Gleiquênias/efeitos dos fármacos , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade , Organismos Aquáticos/metabolismo , Bicarbonatos/análise , Gleiquênias/metabolismo , Fluorometria , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA