Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Front Immunol ; 14: 1307693, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143750

RESUMO

Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), had a major impact on both the global health and economy. Numerous virus-neutralizing antibodies were developed against the S1 subunit of SARS-CoV-2 spike (S) protein to block viral binding to host cells and were authorized for control of the COVID-19 pandemic. However, frequent mutations in the S1 subunit of SARS-CoV-2 enabled the emergence of immune evasive variants. To address these challenges, broadly neutralizing antibodies targeting the relatively conserved S2 subunit and its epitopes have been investigated as antibody therapeutics and universal vaccines. Methods: We initiated this study by immunizing BALB/c mice with ß-propiolactone-inactivated SARS-CoV-2 (IAV) to generate B-cell hybridomas. These hybridomas were subsequently screened using HEK293T cells expressing the S2-ECD domain. Hybridomas that produced anti-S2 antibodies were selected, and we conducted a comprehensive evaluation of the potential of these anti-S2 antibodies as antiviral agents and versatile tools for research and diagnostics. Results: In this study, we present a novel S2-specific antibody, 4A5, isolated from BALB/c mice immunized with inactivated SARS-CoV-2. 4A5 exhibited specific affinity to SARS-CoV-2 S2 subunits compared with those of other ß-CoVs. 4A5 bound to epitope segment F1109-V1133 between the heptad-repeat1 (HR1) and the stem-helix (SH) region. The 4A5 epitope is highly conserved in SARS-CoV-2 variants, with a significant conformational feature in both pre- and postfusion S proteins. Notably, 4A5 exhibited broad neutralizing activity against variants and triggered Fc-enhanced antibody-dependent cellular phagocytosis. Discussion: These findings offer a promising avenue for novel antibody therapeutics and insights for next-generation vaccine design. The identification of 4A5, with its unique binding properties and broad neutralizing capacity, offers a potential solution to the challenge posed by SARS-CoV-2 variants and highlights the importance of targeting the conserved S2 subunit in combating the COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Humanos , SARS-CoV-2/genética , Anticorpos Antivirais , Pandemias , Células HEK293 , Epitopos
2.
Cell Rep ; 42(11): 113358, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37917584

RESUMO

Stress granules (SGs) constitute a signaling hub that plays a critical role in type I interferon responses. Here, we report that growth arrest and DNA damage-inducible beta (Gadd45ß) act as a positive regulator of SG-mediated interferon signaling by targeting G3BP upon RNA virus infection. Gadd45ß deficiency markedly impairs SG formation and SG-mediated activation of interferon signaling in vitro. Gadd45ß knockout mice are highly susceptible to RNA virus infection, and their ability to produce interferon and cytokines is severely impaired. Specifically, Gadd45ß interacts with the RNA-binding domain of G3BP, leading to conformational expansion of G3BP1 via dissolution of its autoinhibitory electrostatic intramolecular interaction. The acidic loop 1- and RNA-binding properties of Gadd45ß markedly increase the conformational expansion and RNA-binding affinity of the G3BP1-Gadd45ß complex, thereby promoting assembly of SGs. These findings suggest a role for Gadd45ß as a component and critical regulator of G3BP1-mediated SG formation, which facilitates RLR-mediated interferon signaling.


Assuntos
Interferon Tipo I , Infecções por Vírus de RNA , Animais , Camundongos , Grânulos Citoplasmáticos/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Grânulos de Estresse
3.
Sens Actuators B Chem ; 380: 133331, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36644652

RESUMO

Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has threatened public health globally, and the emergence of viral variants has exacerbated an already precarious situation. To prevent further spread of the virus and determine government action required for virus control, accurate and rapid immunoassays for SARS-CoV-2 diagnosis are urgently needed. In this study, we generated monoclonal antibodies (mAbs) against the SARS-CoV-2 nucleocapsid protein (NP), compared their reactivity using an enzyme-linked immunosorbent assay (ELISA), and selected four mAbs designated 1G6, 3E10, 3F10, and 5B6 which have higher reactivity to NP and viral lysates of SARS-CoV-2 than other mAbs. Using an epitope mapping assay, we identified that 1G6 detected the C-terminal domain of SARS-CoV-2 NP (residues 248-364), while 3E10 and 3F10 bound to the N-terminal domain (residues 47-174) and 3F10 detected the N-arm region (residues 1-46) of SARS-CoV-2 NP. Based on the epitope study and sandwich ELISA, we selected the 1G6 and 3E10 Abs as an optimal Ab pair and applied them for a microfluidics-based point-of-care (POC) ELISA assay to detect the NPs of SARS-CoV-2 and its variants. The integrated and automatic microfluidic system could operate the serial injection of the sample, the washing solution, the HRP-conjugate antibody, and the TMB substrate solution simply by controlling air purge via a single syringe. The proposed Ab pair-equipped microsystem effectively detected the NPs of SARS-CoV-2 variants as well as in clinical samples. Collectively, our proposed platform provides an advanced protein-based diagnostic tool for detecting SARS-CoV-2.

4.
J Virol ; 96(15): e0102222, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35861515

RESUMO

African swine fever virus (ASFV) is a highly pathogenic swine DNA virus with high mortality that causes African swine fever (ASF) in domestic pigs and wild boars. For efficient viral infection, ASFV has developed complex strategies to evade key components of antiviral innate immune responses. However, the immune escape mechanism of ASFV remains unclear. Upon ASFV infection, cyclic GMP-AMP (2',3'-cGAMP) synthase (cGAS), a cytosolic DNA sensor, recognizes ASFV DNA and synthesizes the second messenger 2',3'-cGAMP, which triggers interferon (IFN) production to interfere with viral replication. In this study, we demonstrated a novel immune evasion mechanism of ASFV EP364R and C129R, which blocks cellular cyclic 2',3'-cGAMP-mediated antiviral responses. ASFV EP364R and C129R with nuclease homology inhibit IFN-mediated responses by specifically interacting with 2',3'-cGAMP and exerting their phosphodiesterase (PDE) activity to cleave 2',3'-cGAMP. Particularly notable is that ASFV EP364R had a region of homology with the stimulator of interferon genes (STING) protein containing a 2',3'-cGAMP-binding motif and point mutations in the Y76S and N78A amino acids of EP364R that impaired interaction with 2',3'-cGAMP and restored subsequent antiviral responses. These results highlight a critical role for ASFV EP364R and C129R in the inhibition of IFN responses and could be used to develop ASFV live attenuated vaccines. IMPORTANCE African swine fever (ASF) is a highly contagious hemorrhagic disease in domestic pigs and wild boars caused by African swine fever virus (ASFV). ASF is a deadly epidemic disease in the global pig industry, but no drugs or vaccines are available. Understanding the pathogenesis of ASFV is essential to developing an effective live attenuated ASFV vaccine, and investigating the immune evasion mechanisms of ASFV is crucial to improve the understanding of its pathogenesis. In this study, for the first time, we identified the EP364R and C129R, uncharacterized proteins that inhibit type I interferon signaling. ASFV EP364R and C129R specifically interacted with 2',3'-cGAMP, the mammalian second messenger, and exerted phosphodiesterase activity to cleave 2',3'-cGAMP. In this study, we discovered a novel mechanism by which ASFV inhibits IFN-mediated antiviral responses, and our findings can guide the understanding of ASFV pathogenesis and the development of live attenuated ASFV vaccines.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Vírus da Febre Suína Africana , Evasão da Resposta Imune , Proteínas de Membrana , Nucleotídeos Cíclicos , Nucleotidiltransferases , Transdução de Sinais , Proteínas Virais , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/metabolismo , Animais , Interferons/antagonistas & inibidores , Interferons/imunologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos/imunologia , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Sus scrofa/virologia , Suínos , Vacinas Atenuadas , Proteínas Virais/metabolismo , Vacinas Virais
5.
Antiviral Res ; 204: 105371, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35777669

RESUMO

Although several vaccines and antiviral drugs against SARS-CoV-2 are currently available, control and prevention of COVID-19 through these interventions is limited due to inaccessibility and economic issues in some regions and countries. Moreover, incomplete viral clearance by ineffective therapeutics may lead to rapid genetic evolution, resulting in the emergence of new SARS-CoV-2 variants that may escape the host immune system as well as currently available COVID-19 vaccines. Here, we report that phytochemicals extracted from Chlorella spp. and Psidium guajava possess broad-spectrum antiviral activity against a range of SARS-CoV-2 variants. Through chromatography-based screening, we identified four bioactive compounds and subsequently demonstrated their potential antiviral activities in vivo. Interestingly, in hACE2 mice, treatment with these compounds significantly attenuates SARS-CoV-2-induced proinflammatory responses, demonstrating their potential anti-inflammatory activity. Collectively, our study suggests that phytochemicals from edible plants may be readily available therapeutics and prophylactics against multiple SARS-CoV-2 strains and variants.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Chlorella , Animais , Antivirais/uso terapêutico , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Camundongos , Compostos Fitoquímicos/farmacologia , SARS-CoV-2
6.
Immun Ageing ; 19(1): 22, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606855

RESUMO

BACKGROUND: Highly contagious respiratory diseases caused by viral infections are a constantly emerging threat, particularly the elderly with the higher risk of developing serious complications. Vaccines are the best strategy for protection against influenza-related diseases. However, the elderly has lower vaccine efficacy than young population and the age-driven decline of the influenza vaccine efficacy remains unresolved. OBJECTIVES: This study investigates the effect of an adjuvant, poly-γ-glutamic acid and alum (PGA/Alum) on vaccine efficacy in aged mice (18-months) and its mechanism is investigated using ovalbumin as a model antigen and a commercial pandemic H1N1 (pH1N1) flu vaccine. Antigen trafficking, dendritic cell (DC) activation, and the DC-mediated T cell activation were analyzed via in vivo imaging and flow cytometry. Antigen-specific humoral and cellular immune responses were evaluated in sera and splenocytes from the vaccinated mice. Also, we analyzed gene expression profiles of splenocytes from the vaccinated mice via single-cell transcriptome sequencing and evaluated the protective efficacy against pH1N1 virus challenge. RESULTS: Aged mice had lower antigen trafficking and DC activation than younger mice (6-weeks), which was ameliorated by PGA/Alum with increased antigen uptake and DC activation leading to improved antigen-specific IFN-γ+CD8+ T lymphocyte frequencies higher in the vaccinated aged mice, to a similar extent as PGA/Alum adjuvanted vaccine-immunized young mice. The results of single-cell transcriptome sequencing display that PGA/Alum also reduced the proportion of age-associated CD8+ T cell subsets and gene levels of inhibitory regulators in CD8+ T cells, which may play a role in the recovery of CD8+ T cell activation. Finally, PGA/Alum adjuvanted pH1N1 vaccine-immunized aged mice were completely protected (100% survival) compared to aged mice immunized with vaccine only (0% survival) after pH1N1 virus challenge, akin to the efficacy of the vaccinated young mice (100% survival). CONCLUSIONS: PGA/Alum adjuvanted pH1N1 vaccine-immunized aged mice showed a significant increase in vaccine efficacy compared to aged mice administered with vaccine only. The enhanced vaccine efficacy by PGA/Alum is associated with significant increases of activation of DCs and effector CD8+ T cells and a decrease in age-associated CD8+ T cell proportion of splenocytes. Collectively, PGA/Alum adjuvanted flu vaccine may be a promising vaccine candidate for the elderly.

7.
mBio ; 13(2): e0040222, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35343786

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection triggers cytokine-mediated inflammation, leading to a myriad of clinical presentations in COVID-19. The SARS-CoV-2 open reading frame 8 (ORF8) is a secreted and rapidly evolving glycoprotein. Patients infected with SARS-CoV-2 variants with ORF8 deleted are associated with mild disease outcomes, but the molecular mechanism behind this is unknown. Here, we report that SARS-CoV-2 ORF8 is a viral cytokine that is similar to but distinct from interleukin 17A (IL-17A) as it induces stronger and broader human IL-17 receptor (hIL-17R) signaling than IL-17A. ORF8 primarily targeted blood monocytes and induced the heterodimerization of hIL-17RA and hIL-17RC, triggering a robust inflammatory response. Transcriptome analysis revealed that besides its activation of the hIL-17R pathway, ORF8 upregulated gene expression for fibrosis signaling and coagulation dysregulation. A naturally occurring ORF8 L84S variant that was highly associated with mild COVID-19 showed reduced hIL-17RA binding and attenuated inflammatory responses. This study reveals how SARS-CoV-2 ORF8 by a viral mimicry of the IL-17 cytokine contributes to COVID-19 severe inflammation. IMPORTANCE Patients infected with SARS-CoV-2 variants lacking open reading frame 8 (ORF8) have been associated with milder infection and disease outcome, but the molecular mechanism behind how this viral accessory protein mediates disease pathogenesis is not yet known. In our study, we revealed that secreted ORF8 protein mimics host IL-17 to activate IL-17 receptors A and C (IL-17RA/C) and induces a significantly stronger inflammatory response than host IL-17A, providing molecular insights into the role of ORF8 in COVID-19 pathogenesis and serving as a potential therapeutic target.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Inflamação/genética , Interleucina-17/genética , Fases de Leitura Aberta , SARS-CoV-2/genética , Proteínas Virais/metabolismo
8.
J Virol ; 96(6): e0187321, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107382

RESUMO

Given the current coronavirus disease 2019 (COVID-19) pandemic, coinfection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) is a major concern for public health. However, the immunopathogenic events occurring with coinfections of SARS-CoV-2 and IAV remain unclear. Here, we report the pathogenic and immunological consequences of SARS-CoV-2 and IAV H1N1 coinfection in the K18-hACE2 transgenic mouse model. Compared with a single infection with SARS-CoV-2 or IAV, coinfections not only prolonged the primary virus infection period but also increased immune cell infiltration and inflammatory cytokine levels in bronchoalveolar lavage fluid leading to severe pneumonia and lung damage. Moreover, coinfections caused severe lymphopenia in peripheral blood, resulting in reduced total IgG, neutralizing antibody titers, and CD4+ T cell responses against each virus. This study sheds light on the immunopathogenesis of SARS-CoV-2 and IAV coinfection, which may guide the development of effective therapeutic strategies for the treatment of patients coinfected with these viruses. IMPORTANCE The cocirculation of influenza virus merging with the COVID-19 pandemic raises a potentially severe threat to public health. Recently, increasing numbers of SARS-CoV-2 and influenza virus coinfection have been reported from many countries. It is a worrisome issue that SARS-CoV-2 coinfection with other pathogens may worsen the clinical outcome and severity of COVID-19 and increase fatality. Here, we evaluated SARS-CoV-2 and IAV coinfection using the K18-hACE2 mouse model. Coinfected mice exhibited increased mortality with prolonged IAV shedding. Furthermore, coinfected mice showed a higher level of cytokines and chemokines than a single infection condition. Interestingly, our data show that coinfected mice showed significantly fewer virus-specific and neutralizing antibodies than the mice with a single infection. Overall, this study suggests that coinfection aggravates viral pathology by impaired neutralizing antibody response.


Assuntos
COVID-19 , Coinfecção , Vírus da Influenza A Subtipo H1N1 , Infecções por Orthomyxoviridae , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Linfócitos T CD4-Positivos/imunologia , COVID-19/imunologia , Coinfecção/imunologia , Modelos Animais de Doenças , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Camundongos , Infecções por Orthomyxoviridae/imunologia , SARS-CoV-2/imunologia , Índice de Gravidade de Doença
9.
Vaccines (Basel) ; 9(6)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208032

RESUMO

The ongoing COVID-19 pandemic caused by SARS-CoV-2 has posed a devastating threat worldwide. The receptor-binding domain (RBD) of the spike protein is one of the most important antigens for SARS-CoV-2 vaccines, while the analysis of CD8 cytotoxic T lymphocyte activity in preclinical studies using mouse models is critical for evaluating vaccine efficacy. Here, we immunized C57BL/6 wild-type mice and transgenic mice expressing human angiotensin-converting enzyme 2 (ACE2) with the SARS-CoV-2 RBD protein to evaluate the IFN-γ-producing T cells in the splenocytes of the immunized mice using an overlapping peptide pool by an enzyme-linked immunospot assay and flow cytometry. We identified SARS-CoV-2 S395-404 as a major histocompatibility complex (MHC) class I-restricted epitope for the RBD-specific CD8 T cell responses in C57BL/6 mice.

10.
J Microbiol Biotechnol ; 31(2): 304-316, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33263336

RESUMO

Vaccination is the most effective way to prevent influenza virus infections. However, conventional vaccines based on hemagglutinin (HA) have to be annually updated because the HA of influenza viruses constantly mutates. In this study, we produced a 3M2e-3HA2-NP chimeric protein as a vaccine antigen candidate using an Escherichia coli expression system. The vaccination of chimeric protein (15 µg) conferred complete protection against A/Puerto Rico/8/1934 (H1N1; PR8) in mice. It strongly induced influenza virus-specific antibody responses, cytotoxic T lymphocyte activity, and antibody-dependent cellular cytotoxicity. To spare the dose and enhance the cross-reactivity of the chimeric, we used a complex of poly-γ-glutamic acid and alum (PGA/alum) as an adjuvant. PGA/alum-adjuvanted, low-dose chimeric protein (1 or 5 µg) exhibited higher cross-protective effects against influenza A viruses (PR8, CA04, and H3N2) compared with those of chimeric alone or alum-adjuvanted proteins in vaccinated mice. Moreover, the depletion of CD4+ T, CD8+ T, and NK cells reduced the survival rate and efficacy of the PGA/alum-adjuvanted chimeric protein. Collectively, the vaccination of PGA/alum-adjuvanted chimeric protein induced strong protection efficacy against homologous and heterologous influenza viruses in mice, which suggests that it may be a promising universal influenza vaccine candidate.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Proteínas do Nucleocapsídeo/imunologia , Proteínas da Matriz Viral/imunologia , Adjuvantes Imunológicos/administração & dosagem , Compostos de Alúmen/administração & dosagem , Animais , Anticorpos Antivirais/imunologia , Reações Cruzadas , Feminino , Hemaglutininas Virais , Humanos , Imunidade Humoral , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas do Nucleocapsídeo/administração & dosagem , Proteínas do Nucleocapsídeo/genética , Ácido Poliglutâmico/administração & dosagem , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Proteínas da Matriz Viral/administração & dosagem , Proteínas da Matriz Viral/genética
11.
J Microbiol ; 58(10): 886-891, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32989642

RESUMO

Various treatments and agents had been reported to inactivate RNA viruses. Of these, thermal inactivation is generally considered an effective and cheap method of sample preparation for downstream assays. The purpose of this study is to establish a safe inactivation method for SARS-CoV-2 without compromising the amount of amplifiable viral genome necessary for clinical diagnoses. In this study, we demonstrate the infectivity and genomic stability of SARSCoV- 2 by thermal inactivation at both 56°C and 65°C. The results substantiate that viable SARS-CoV-2 is readily inactivated when incubated at 56°C for 30 min or at 65°C for 10 min. qRT-PCR of specimens heat-inactivated at 56°C for 30 min or 65°C for 15 min revealed similar genomic RNA stability compared with non-heat inactivated specimens. Further, we demonstrate that 30 min of thermal inactivation at 56°C could inactivate viable viruses from clinical COVID-19 specimens without attenuating the qRT-PCR diagnostic sensitivity. Heat treatment of clinical specimens from COVID-19 patients at 56°C for 30 min or 65°C for 15 min could be a useful method for the inactivation of a highly contagious agent, SARS-CoV-2. Use of this method would reduce the potential for secondary infections in BSL2 conditions during diagnostic procedures. Importantly, infectious virus can be inactivated in clinical specimens without compromising the sensitivity of the diagnostic RT-PCR assay.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/virologia , Manejo de Espécimes/métodos , Inativação de Vírus , Betacoronavirus/genética , Betacoronavirus/isolamento & purificação , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Infecções por Coronavirus/virologia , Genoma Viral , Instabilidade Genômica , Temperatura Alta , Humanos , Pandemias , Pneumonia Viral/diagnóstico , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2
12.
Vaccines (Basel) ; 8(2)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560094

RESUMO

Emerging influenza viruses pose an extreme global risk to human health, resulting in an urgent need for effective vaccination against influenza infection. Adjuvants are vital components that can improve vaccine efficacy, yet only a few adjuvants have been licensed in human vaccines. Here, we investigate the adjuvant effects of Escherichia coli-produced monophosphoryl lipid A (MPL), named EcML, in enhancing the immunogenicity and efficacy of an influenza vaccine. Similar to MPL, EcML activated dendritic cells and enhanced the antigen processing of cells in vitro. Using ovalbumin (OVA) as a model antigen, EcML increased OVA-specific antibody production, cytotoxic T lymphocyte activity. The safety of EcML was demonstrated as being similar to that of MPL by showing not significant in vitro cell cytotoxicity but transient systemic inflammatory responses within 24 h in OVA immunized mice. Importantly, mice vaccinated with pandemic H1N1 (pH1N1) vaccine antigen, combined with EcML, were fully protected from pH1N1 virus infection by enhanced influenza-specific antibody titers, hemagglutination inhibition titers, and IFN-γ- secreting cells. Taken together, our results strongly suggest that EcML might be a promising vaccine adjuvant for preventing influenza virus infection.

13.
Cell Host Microbe ; 27(5): 704-709.e2, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32259477

RESUMO

The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in China and rapidly spread worldwide. To prevent SARS-CoV-2 dissemination, understanding the in vivo characteristics of SARS-CoV-2 is a high priority. We report a ferret model of SARS-CoV-2 infection and transmission that recapitulates aspects of human disease. SARS-CoV-2-infected ferrets exhibit elevated body temperatures and virus replication. Although fatalities were not observed, SARS-CoV-2-infected ferrets shed virus in nasal washes, saliva, urine, and feces up to 8 days post-infection. At 2 days post-contact, SARS-CoV-2 was detected in all naive direct contact ferrets. Furthermore, a few naive indirect contact ferrets were positive for viral RNA, suggesting airborne transmission. Viral antigens were detected in nasal turbinate, trachea, lungs, and intestine with acute bronchiolitis present in infected lungs. Thus, ferrets represent an infection and transmission animal model of COVID-19 that may facilitate development of SARS-CoV-2 therapeutics and vaccines.


Assuntos
Infecções por Coronavirus/patologia , Infecções por Coronavirus/transmissão , Furões , Pneumonia Viral/patologia , Pneumonia Viral/transmissão , Animais , Anticorpos Antivirais/imunologia , Betacoronavirus/imunologia , COVID-19 , Modelos Animais de Doenças , Pandemias , SARS-CoV-2 , Vacinas Virais/imunologia , Eliminação de Partículas Virais
14.
Pathogens ; 8(4)2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31861046

RESUMO

Foot-and-mouth disease (FMD) is a highly contagious and economically devastating disease affecting cloven-hoofed livestock worldwide. FMD virus (FMDV) type A is one of the most common causes of FMD outbreaks among the seven FMDV serotypes, and its serological diagnosis is therefore important to confirm FMDV type A infection and to determine FMD vaccine efficacy. Here, we generated monoclonal antibodies (mAbs) specific to FMDV type A via hybridoma systems using an inactivated FMDV type A (A22/Iraq/1964) and found 4 monoclones (#29, #106, #108, and #109) with high binding reactivity to FMDV type A among 594 primary clones. In particular, the #106 mAb had a higher binding reactivity to the inactivated FMDV type A than the other mAbs and a commercial mAb. Moreover, the #106 mAb showed no cross-reactivity to inactivated FMDV type South African territories 1, 2, and 3, and low reactivity to inactivated FMDV type O (O1 Manisa). Importantly, the solid-phase competitive ELISA (SPCE) using horseradish peroxidase (HRP)-conjugated #106 mAb detected FMDV type A-specific Abs in sera from FMD type A-vaccinated cattle more effectively than a commercial SPCE. These results suggest that the newly developed FMDV type A-specific mAb might be useful for diagnostic approaches for detecting Abs against FMDV type A.

15.
J Microbiol Biotechnol ; 29(9): 1444-1452, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31387341

RESUMO

The conventional prophylactic vaccines for human papillomavirus (HPV) efficiently prevent infection with high-risk HPV types, but they do not promote therapeutic effects against cervical cancer. Previously, we developed HPV16 E7-expressing Lactobacillus casei (L. casei-E7) as a therapeutic vaccine candidate for cervical cancer, which induces antitumor therapeutic effects in a TC-1 murine cancer model. To improve the therapeutic effect of L. casei-E7, we performed co-treatment with poly-gamma-glutamic acid (γ-PGA), a safe and edible biomaterial naturally secreted by Bacillus subtilis. We investigated their synergistic effect to improve antitumor efficacy in a murine cancer model. The treatment with γ-PGA did not show in vitro cytotoxicity against TC-1 tumor cells; however, an enhanced innate immune response including activation of dendritic cells was observed. Mice co-administered with γ-PGA and L. casei-E7 showed significantly suppressed growth of TC-1 tumor cells and an increased survival rate in TC-1 mouse models compared to those of mice vaccinated with L. casei-E7 alone. The administration of γ-PGA markedly enhanced the activation of natural killer (NK) cells but did not increase the E7-specific cytolytic activity of CD8+ T lymphocytes in mice vaccinated with L. casei-E7. Overall, our results suggest that oral administration of γ-PGA induces a synergistic antitumor effect in combination with L. casei-E7.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vacinas Anticâncer/administração & dosagem , Lacticaseibacillus casei/genética , Proteínas E7 de Papillomavirus/genética , Vacinas contra Papillomavirus/administração & dosagem , Ácido Poliglutâmico/análogos & derivados , Neoplasias do Colo do Útero/prevenção & controle , Adjuvantes Imunológicos/farmacologia , Administração Oral , Animais , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Sobrevivência Celular , Células Cultivadas , Células Dendríticas/imunologia , Feminino , Imunidade Inata/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas E7 de Papillomavirus/imunologia , Vacinas contra Papillomavirus/genética , Vacinas contra Papillomavirus/imunologia , Ácido Poliglutâmico/administração & dosagem , Ácido Poliglutâmico/farmacologia , Células RAW 264.7 , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Front Immunol ; 10: 1604, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354739

RESUMO

The use of a good vaccine adjuvant may induce a higher immunogenicity profile of vaccine antigens. Here, we developed a new adjuvant by combining poly-γ-glutamic acid (γ-PGA) with alum (PGA/Alum) and investigated its ability to enhance the immunogenicity and the cross-reactive efficacy of pandemic H1N1 (pH1N1) influenza vaccine antigen. PGA/Alum enhanced antigen delivery to draining lymph nodes and antigen-specific immunogenicity in mice using OVA as a model antigen. It also greatly increased OVA-specific antibody production, cytotoxic T lymphocyte (CTL) activity, and antibody-dependent cellular cytotoxicity (ADCC). These abilities of PGA/Alum improved the protective efficacy of pH1N1 vaccine antigen by increasing hemagglutination-inhibition titers, enhancing ADCC and CTL activity, and speeding viral clearance following homologous viral challenge. Importantly, the cross-protective efficacy of pH1N1 vaccine against heterologous viruses [A/Puerto Rico/8/34 (H1N1) and A/Hong Kong/1/1968 (H3N2)] was significantly enhanced by PGA/Alum, and cross-reactive ADCC and CTL activities were observed. Together, our results strongly suggest that PGA/Alum may be a promising vaccine adjuvant for preventing influenza and other infectious diseases.


Assuntos
Adjuvantes Imunológicos , Compostos de Alúmen , Reações Cruzadas/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/imunologia , Ácido Poliglutâmico/análogos & derivados , Animais , Anticorpos Antivirais/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Apresentação de Antígeno/imunologia , Sobrevivência Celular , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Humanos , Imunidade Celular , Imunidade Humoral , Imunização , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Linfonodos/imunologia , Linfonodos/metabolismo , Linfonodos/patologia , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , Ácido Poliglutâmico/imunologia
17.
Virol Sin ; 34(5): 563-571, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31214999

RESUMO

Chikungunya fever is a vector-borne viral disease transmitted to humans by chikungunya virus (CHIKV)-infected mosquitoes. There have been many outbreaks of CHIKV infection worldwide, and the virus poses ongoing risks to global health. To prevent and control CHIKV infection, it is important to improve the current CHIKV diagnostic approaches to allow for the detection of low CHIKV concentrations and to correctly distinguish CHIKV infections from those due to other mosquito-transmitted viruses, including dengue virus (DENV), Japanese encephalitis virus (JEV), and Zika virus (ZIKV). Here, we produced monoclonal antibodies (mAbs) against the CHIKV envelope 2 protein (CHIKV-E2) and compared their sensitivity and specificity with commercially available mAbs using enzyme-linked immunosorbent assays (ELISA). Two anti-CHIKV-E2 mAbs, 19-1 and 21-1, showed higher binding affinities to CHIKV-E2 protein than the commercial mAbs did. In particular, the 19-1 mAb had the strongest binding affinity to inactivated CHIKV. Moreover, the 19-1 mAb had very little cross-reactivity with other mosquito-borne viruses, such as ZIKV, JEV, and DENV. These results suggest that the newly produced anti-CHIKV-E2 mAb, 19-1, could be used for CHIKV diagnostic approaches.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Febre de Chikungunya/diagnóstico , Vírus Chikungunya/imunologia , Proteínas do Envelope Viral/imunologia , Anticorpos Monoclonais/isolamento & purificação , Febre de Chikungunya/imunologia , Vírus Chikungunya/genética , Humanos , Sensibilidade e Especificidade , Testes Sorológicos , Proteínas do Envelope Viral/genética
18.
J Microbiol Biotechnol ; 28(5): 809-815, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29642295

RESUMO

Influenza, which is a highly contagious disease caused by the influenza A virus, continues to be a major health concern worldwide. Although the accurate and early diagnosis of influenza virus infection is important for controlling the spread of this disease and rapidly initiating antiviral therapy, the current influenza diagnostic kits are limited by their low sensitivity. In this study, we developed several new influenza nucleoprotein (NP)-specific monoclonal antibodies (mAbs) and compared their sensitivity and specificity of those with commercially available anti-NP mAbs. Three mAbs, designated M24.11, M34.3, and M34.33, exhibited higher reactivities to recombinant NPs and A/Puerto Rico/8/1934 (H1N1) viral lysates compared with the commercial mAbs, as assessed using enzyme-linked immunosorbent assays. M34.3 and M34.33 showed higher reactivities with A/California/04/09 (pandemic H1N1) and A/Philippines/2/82 (H3N2) viral lysates than the commercial mAbs. In contrast, M24.11 had marked reactivity with H3N2 but not with pandemic H1N1. Immunofluorescent confocal microscopy showed that the three mAbs effectively detected the presence of influenza virus in lung tissues of mice infected with A/Puerto Rico/8/1934. These results indicate that the newly developed M34.3 and M34.33 mAbs could be useful for the development of influenza diagnostics.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Vírus da Influenza A/imunologia , Influenza Humana/diagnóstico , Nucleoproteínas/imunologia , Animais , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/análise , Anticorpos Antivirais/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Nucleoproteínas/análise , Nucleoproteínas/metabolismo , Infecções por Orthomyxoviridae/diagnóstico , Proteínas Recombinantes/análise , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Sensibilidade e Especificidade
19.
Sci Rep ; 7: 44839, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28322289

RESUMO

In 2009, the global outbreak of an influenza pandemic emphasized the need for an effective vaccine adjuvant. In this study, we examined the efficacy of poly-γ-glutamic acid/chitosan (PC) nanogel as an adjuvant for the influenza vaccine. PC nanogel significantly enhanced antigen-specific cross-presentation and cytotoxic T lymphocyte (CTL) activity. Compared with alum, the protective efficacy of the pandemic H1N1 influenza (pH1N1) vaccine was substantially increased by PC nanogel, with increased hemagglutination-inhibition titers, CTL activity, and earlier virus clearance after homologous and heterosubtypic [A/Philippines/2/82 (H3N2)] virus challenges. However, CD8+ T cell-depleted mice displayed no protection against the heterosubtypic virus challenge after immunization with PC nanogel-adjuvanted pH1N1 vaccine. We also observed that using PC nanogel as a vaccine adjuvant had a dose-sparing effect and significantly enhanced the long-lasting protection of the pH1N1 vaccine. Together, these results suggest that PC nanogel is a promising vaccine adjuvant that could broadly prevent influenza virus infection.


Assuntos
Quitosana/análogos & derivados , Reações Cruzadas/imunologia , Imunogenicidade da Vacina , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Ácido Poliglutâmico/análogos & derivados , Adjuvantes Imunológicos , Animais , Apresentação de Antígeno/imunologia , Antígenos Virais/imunologia , Quitosana/química , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Furões , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Imunidade Celular , Vacinas contra Influenza/química , Camundongos , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/prevenção & controle , Fagossomos/metabolismo , Ácido Poliglutâmico/química
20.
PLoS One ; 11(5): e0154824, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27149064

RESUMO

An outbreak of influenza H1N1 in 2009, representing the first influenza pandemic of the 21st century, was transmitted to over a million individuals and claimed 18,449 lives. The current status in many countries is to prepare influenza vaccine using cell-based or egg-based killed vaccine. However, traditional influenza vaccine platforms have several limitations. To overcome these limitations, many researchers have tried various approaches to develop alternative production platforms. One of the alternative approach, we reported the efficacy of influenza HA vaccination using a baculoviral DNA vaccine (AcHERV-HA). However, the immune response elicited by the AcHERV-HA vaccine, which only targets the HA antigen, was lower than that of the commercial killed vaccine. To overcome the limitations of this previous vaccine, we constructed a human endogenous retrovirus (HERV) envelope-coated, baculovirus-based, virus-like-particle (VLP)-forming DNA vaccine (termed AcHERV-VLP) against pandemic influenza A/California/04/2009 (pH1N1). BALB/c mice immunized with AcHERV-VLP (1×10(7) FFU AcHERV-VLP, i.m.) and compared with mice immunized with the killed vaccine or mice immunized with AcHERV-HA. As a result, AcHERV-VLP immunization produced a greater humoral immune response and exhibited neutralizing activity with an intrasubgroup H1 strain (PR8), elicited neutralizing antibody production, a high level of interferon-γ secretion in splenocytes, and diminished virus shedding in the lung after challenge with a lethal dose of influenza virus. In conclusion, VLP-forming baculovirus DNA vaccine could be a potential vaccine candidate capable of efficiently delivering DNA to the vaccinee and VLP forming DNA eliciting stronger immunogenicity than egg-based killed vaccines.


Assuntos
Anticorpos Antivirais/análise , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/epidemiologia , Humanos , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA