Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Pathog ; 16(9): e1008851, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32986782

RESUMO

Enteroaggregative Escherichia coli (EAEC) is a significant cause of acute and chronic diarrhea, foodborne outbreaks, infections of the immunocompromised, and growth stunting in children in developing nations. There is no vaccine and resistance to antibiotics is rising. Unlike related E. coli pathotypes that are often associated with acute bouts of infection, EAEC is associated with persistent diarrhea and subclinical long-term colonization. Several secreted virulence factors have been associated with EAEC pathogenesis and linked to disease in humans, less certain are the molecular drivers of adherence to the intestinal mucosa. We previously established human intestinal enteroids (HIEs) as a model system to study host-EAEC interactions and aggregative adherence fimbriae A (AafA) as a major driver of EAEC adherence to HIEs. Here, we report a large-scale assessment of the host response to EAEC adherence from all four segments of the intestine across at least three donor lines for five E. coli pathotypes. The data demonstrate that the host response in the duodenum is driven largely by the infecting pathotype, whereas the response in the colon diverges in a patient-specific manner. Major pathways altered in gene expression in each of the four enteroid segments differed dramatically, with responses observed for inflammation, apoptosis and an overwhelming response to different mucin genes. In particular, EAEC both associated with large mucus droplets and specific mucins at the epithelial surface, binding that was ameliorated when mucins were removed, a process dependent on AafA. Pan-screening for glycans for binding to purified AafA identified the human ligand as heparan sulfate proteoglycans (HSPGs). Removal of HSPG abrogated EAEC association with HIEs. These results may mean that the human intestine responds remarkably different to distinct pathobionts that is dependent on the both the individual and intestinal segment in question, and uncover a major role for surface heparan sulfate proteoglycans as tropism-driving factor in adherence and/or colonization.


Assuntos
Aderência Bacteriana/fisiologia , Infecções por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Adesinas de Escherichia coli/genética , Escherichia coli/metabolismo , Fímbrias Bacterianas/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Fatores de Virulência/metabolismo
2.
Curr Protoc Microbiol ; 50(1): e55, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29927096

RESUMO

Adherence, invasion, and translocation to and through the intestinal epithelium are important drivers of disease for many enteric bacteria. However, most work has been limited to transformed intestinal cell lines or murine models that often do not faithfully recapitulate key elements associated with human disease. The recent technological advances in organotypic tissue and cell culture are providing unparalleled access to systems with human physiology and complexity. Human intestinal enteroids (HIEs), derived from patient biopsy or surgical specimens of intestinal tissues, are organotypic cultures now being adapted to the study of enteric infections. HIEs are comprised of the dominant cell types of the human gastrointestinal epithelium, can be grown in two- or three-dimensional structures, form a crypt-villus axis with defined apical and basolateral compartments, and undergo physiologic responses to many different stimuli. Here, we describe a series of protocols that encompass the use of human enteroids for the measurement of the adherence, invasion, and translocation of E. coli to and through the intestinal epithelium. We also outline the steps needed to grow and prepare enteroids for this purpose and highlight some common problems to troubleshoot. © 2018 by John Wiley & Sons, Inc.


Assuntos
Aderência Bacteriana , Translocação Bacteriana , Escherichia coli/fisiologia , Técnicas In Vitro/métodos , Intestinos/microbiologia , Coloração e Rotulagem/métodos , Técnicas de Cultura de Tecidos/métodos , Preservação de Tecido/métodos , Animais , Linhagem Celular , Epitélio/crescimento & desenvolvimento , Epitélio/microbiologia , Escherichia coli/genética , Humanos , Intestinos/crescimento & desenvolvimento , Organoides/crescimento & desenvolvimento , Organoides/microbiologia
3.
mBio ; 9(1)2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463660

RESUMO

Enteroaggregative Escherichia coli (EAEC) is an important diarrheal pathogen and a cause of both acute and chronic diarrhea. It is a common cause of pediatric bacterial diarrhea in developing countries. Despite its discovery in 1987, the intestinal tropism of the pathogen remains unknown. Cell lines used to study EAEC adherence include the HEp-2, T-84, and Caco-2 lines, but they exhibit abnormal metabolism and large variations in gene expression. Animal models either do not faithfully manifest human clinical symptoms or are cumbersome and expensive. Using human intestinal enteroids derived from all four segments of the human intestine, we find that EAEC demonstrates aggregative adherence to duodenal and ileal enteroids, with donor-driven differences driving a sheet-like and layered pattern. This contrasts with the colon, where segment-specific tropisms yielded a mesh-like adherence pattern dominated by interconnecting filaments. Very little to no aggregative adherence to jejunal enteroids was observed, regardless of the strain or donor, in contrast to a strong duodenal association across all donors and strains. These unique patterns of intestinal segment- or donor-specific adherence, but not the overall numbers of associated bacteria, were dependent on the major subunit protein of aggregative adherence fimbriae II (AafA), implying that the morphology of adherent clusters and the overall intestinal cell association of EAEC occur by different mechanisms. Our results suggest that we must give serious consideration to inter- and intrapatient variations in what is arguably the first step in pathogenesis, that of adherence, when considering the clinical manifestation of these infections.IMPORTANCE EAEC is a leading cause of pediatric bacterial diarrhea and a common cause of diarrhea among travelers and immunocompromised individuals. Heterogeneity in EAEC strains and lack of a good model system are major roadblocks to the understanding of its pathogenesis. Utilizing human intestinal enteroids to study the adherence of EAEC, we demonstrate that unique patterns of adherence are largely driven by unidentified factors present in different intestinal segments and from different donors. These patterns are also dependent on aggregative adherence fimbriae II encoded by EAEC. These results imply that we must also consider the contribution of the host to understand the pathogenesis of EAEC-induced inflammation and diarrhea.


Assuntos
Aderência Bacteriana , Escherichia coli/fisiologia , Intestinos/microbiologia , Tropismo Viral , Adesinas de Escherichia coli/genética , Adesinas de Escherichia coli/metabolismo , Escherichia coli/genética , Humanos , Técnicas de Cultura de Órgãos
4.
Infect Immun ; 85(11)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28808163

RESUMO

The translocation of bacteria across the intestinal epithelium of immunocompromised patients can lead to bacteremia and life-threatening sepsis. Extraintestinal pathogenic Escherichia coli (ExPEC), so named because this pathotype infects tissues distal to the intestinal tract, is a frequent cause of such infections, is often multidrug resistant, and chronically colonizes a sizable portion of the healthy population. Although several virulence factors and their roles in pathogenesis are well described for ExPEC strains that cause urinary tract infections and meningitis, they have not been linked to translocation through intestinal barriers, a fundamentally distant yet important clinical phenomenon. Using untransformed ex situ human intestinal enteroids and transformed Caco-2 cells, we report that ExPEC strain CP9 binds to and invades the intestinal epithelium. ExPEC harboring a deletion of the gene encoding the mannose-binding type 1 pilus tip protein FimH demonstrated reduced binding and invasion compared to strains lacking known E. coli virulence factors. Furthermore, in a murine model of chemotherapy-induced translocation, ExPEC lacking fimH colonized at levels comparable to that of the wild type but demonstrated a statistically significant reduction in translocation to the kidneys, spleen, and lungs. Collectively, this study indicates that FimH is important for ExPEC translocation, suggesting that the type 1 pilus is a therapeutic target for the prevention of this process. Our study also highlights the use of human intestinal enteroids in the study of enteric diseases.


Assuntos
Adesinas de Escherichia coli/genética , Translocação Bacteriana/genética , Células Epiteliais/microbiologia , Infecções por Escherichia coli/microbiologia , Escherichia coli Extraintestinal Patogênica/patogenicidade , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/fisiologia , Animais , Células CACO-2 , Células Epiteliais/patologia , Infecções por Escherichia coli/patologia , Escherichia coli Extraintestinal Patogênica/fisiologia , Feminino , Proteínas de Fímbrias/deficiência , Expressão Gênica , Humanos , Jejuno/microbiologia , Jejuno/patologia , Rim/microbiologia , Rim/patologia , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos Endogâmicos BALB C , Cultura Primária de Células , Esferoides Celulares/microbiologia , Esferoides Celulares/patologia , Baço/microbiologia , Baço/patologia , Virulência
5.
Infect Immun ; 83(8): 3243-56, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26034214

RESUMO

Escherichia coli is a major cause of life-threatening infections in patients with neutropenia, particularly those receiving chemotherapy for the treatment of cancer. In most cases, these infections originate from opportunistic strains living within the patient's gastrointestinal tract which then translocate to major organ systems. There are no animal models that faithfully recapitulate these infections, and, as such, the host or bacterial factors that govern this process remain unidentified. We present here a novel model of chemotherapy-induced bacterial translocation of E. coli. Oral gavage of BALB/c mice with a clinical isolate of extraintestinal pathogenic E. coli (ExPEC) leads to stable and long-term colonization of the murine intestine. Following the induction of neutropenia with the chemotherapeutic drug cyclophosphamide, ExPEC translocates from the intestine to the lungs, liver, spleen, and kidneys with concomitant morbidity in infected animals. Translocation can also occur in mice bearing mammary tumors, even in the absence of chemotherapy. Translocation of ExPEC is also associated with an increase of the diversity of bacterial DNA detected in the blood. This is the first report of a chemotherapy-based animal model of ExPEC translocation in cancerous mice, a system that can be readily used to identify important virulence factors for this process.


Assuntos
Antineoplásicos/efeitos adversos , Translocação Bacteriana , Infecções por Escherichia coli/microbiologia , Escherichia coli/fisiologia , Intestinos/microbiologia , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Escherichia coli/genética , Infecções por Escherichia coli/etiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Feminino , Humanos , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/complicações , Neutropenia/complicações , Neutropenia/tratamento farmacológico
6.
Parasit Vectors ; 6(1): 261, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-24025197

RESUMO

BACKGROUND: Ticks are obligate hematophagous ectoparasites that suppress the host's immune and inflammatory responses by secreting immuno-modulatory and anti-inflammatory molecules in their saliva. In previous studies we have shown that tick salivary gland extract (SGE) and saliva from Dermacentor variabilis have distinct effects on platelet-derived growth factor (PDGF)-stimulated IC-21 macrophage and NIH3T3-L1 fibroblast migration. Since tick saliva contains a high concentration of prostaglandin E2 (PGE2), a potent modulator of inflammation, we used a PGE2 receptor antagonist to evaluate the role of PGE2 in the different migratory responses induced by saliva and its impact on macrophage cytokine profile. METHODS: Adult ticks were fed on female New Zealand white rabbits for 5-8 days. Female ticks were stimulated with dopamine/theophylline to induce salivation and saliva was pooled. Competitive enzyme immunoassays (EIA) were used to measure saliva PGE2 content and the changes in macrophage intracellular cyclic adenosine monophosphate (cAMP) levels. The effects of tick saliva on macrophage and fibroblast migration were assessed in the absence and presence of the PGE2 receptor antagonist, AH 6809, using blind well chamber assays. A cytokine antibody array was used to examine the effects of tick saliva on macrophage cytokine secretion. Statistical significance was determined by one-way ANOVA; Student Newman-Kuels post-test was used for multiple comparisons. RESULTS: The saliva-induced increase in PDGF-stimulated macrophage migration was reversed by AH 6809. The inhibition of PDGF-stimulated fibroblast migration by saliva was also antagonist-sensitive. Tick saliva induced macrophages to secrete copious amounts of PGE2, and conditioned medium from these cells caused an AH 6809-sensitive inhibition of stimulated fibroblast migration, showing that macrophages can regulate fibroblast activity. We show that tick saliva decreased the secretion of the pro-inflammatory cytokines regulated and normal T cell expressed and secreted (RANTES/CCL5), tumor necrosis factor-alpha (TNF-α), and soluble TNF receptor I (sTNFRI) through a PGE2-dependent mechanism mediated by cAMP. Saliva had similar effects on lipopolysaccharide (LPS) stimulated macrophages. CONCLUSIONS: Our data show that ticks utilize salivary PGE2 to subvert the ability of macrophages to secrete pro-inflammatory mediators and recruit fibroblasts to the feeding lesion, therefore inhibiting wound healing.


Assuntos
Movimento Celular/efeitos dos fármacos , Citocinas/metabolismo , Dinoprostona/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Saliva/química , Animais , Proteínas de Artrópodes/metabolismo , Dermacentor/química , Dermacentor/imunologia , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Humanos , Masculino , Nova Zelândia , Coelhos , Saliva/imunologia
7.
Ticks Tick Borne Dis ; 4(1-2): 120-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23168047

RESUMO

In previous studies we showed that tick saliva modulates the migratory activity of cells involved in the wound healing response. Since cell migration is a prerequisite for tumor invasion and metastasis, we examined the effects of tick saliva on the migratory and invasive activity of Saos-2 osteosarcoma and MDA-MB-231 (MB-231) breast cancer cells and the potential signaling pathways that may be affected. Saliva inhibited basal and agonist-induced Saos-2 and MB-231 migration and invasion through a matrigel-coated filter. In the Saos-2 cells, saliva suppressed epidermal growth factor (EGF)-activation of Akt/Protein Kinase B, however, only basal extracellular signal-regulated kinase (ERK) activity was affected in MB-231 cells. EGF receptor (EGFR) overexpression masked the effect of saliva on MB-231 cells, but its ability to inhibit MB-231 migration was enhanced by the EGFR inhibitor PD 168393 and MEK inhibitor U0126. Our data indicate that the mechanisms ticks have evolved to regulate the wound healing response have generalized effects on the migratory and invasive activities of metastatic cancer cells.


Assuntos
Neoplasias da Mama , Movimento Celular/fisiologia , Osteossarcoma , Saliva/química , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Invasividade Neoplásica , Transdução de Sinais
8.
Exp Parasitol ; 127(3): 665-71, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21145320

RESUMO

We studied the effects of tick saliva on cell migration, cell signaling, phagocytosis, and gene expression in the murine macrophage cell line, IC-21. Saliva increased both basal- and platelet-derived growth factor (PDGF)-stimulated migration in IC-21 cells. However, saliva did not affect PDGF-stimulated extracellular signal-regulated kinase (ERK) activity. Zymosan-mediated interleukin-1 receptor associated kinase (IRAK) activity increased when cells were pretreated with saliva. Saliva suppressed phagocytosis of zymosan particles by IC-21 cells. An RT(2) Profiler™ PCR Array revealed that saliva regulates gene expression in a manner consistent with an immune response skewed toward a Th2 reaction, which is characterized by production of anti-inflammatory cytokines IL-4 and IL-10. Our results using IC-21 cells suggest that Dermacentor variabilis has evolved a mechanism for regulating macrophage function, which may contribute to the tick's ability to modulate immune function.


Assuntos
Vetores Aracnídeos/fisiologia , Dermacentor/fisiologia , Macrófagos/fisiologia , Animais , Linhagem Celular , Movimento Celular , Quimiotaxia de Leucócito , Ensaio de Imunoadsorção Enzimática/métodos , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Feminino , Expressão Gênica , Macrófagos/imunologia , Masculino , Camundongos , Fagocitose , Fator de Crescimento Derivado de Plaquetas/farmacologia , Reação em Cadeia da Polimerase , Coelhos , Saliva/fisiologia , Organismos Livres de Patógenos Específicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA