Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell Rep ; 43(5): 114212, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38743567

RESUMO

Diverse types of inhibitory interneurons (INs) impart computational power and flexibility to neocortical circuits. Whereas markers for different IN types in cortical layers 2-6 (L2-L6) have been instrumental for generating a wealth of functional insights, only the recent identification of a selective marker (neuron-derived neurotrophic factor [NDNF]) has opened comparable opportunities for INs in L1 (L1INs). However, at present we know very little about the connectivity of NDNF L1INs with other IN types, their input-output conversion, and the existence of potential NDNF L1IN subtypes. Here, we report pervasive inhibition of L2/3 INs (including parvalbumin INs and vasoactive intestinal peptide INs) by NDNF L1INs. Intersectional genetics revealed similar physiology and connectivity in the NDNF L1IN subpopulation co-expressing neuropeptide Y. Finally, NDNF L1INs prominently and selectively engage in persistent firing, a physiological hallmark disconnecting their output from the current input. Collectively, our work therefore identifies NDNF L1INs as specialized master regulators of superficial neocortex according to their pervasive top-down afferents.


Assuntos
Interneurônios , Interneurônios/metabolismo , Animais , Camundongos , Neuropeptídeo Y/metabolismo , Neocórtex/metabolismo , Neocórtex/citologia , Neocórtex/fisiologia , Peptídeo Intestinal Vasoativo/metabolismo , Masculino , Parvalbuminas/metabolismo
2.
PLoS Biol ; 18(4): e3000665, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32275651

RESUMO

The correct subcellular distribution of proteins establishes the complex morphology and function of neurons. Fluorescence microscopy techniques are invaluable to investigate subcellular protein distribution, but they suffer from the limited ability to efficiently and reliably label endogenous proteins with fluorescent probes. We developed ORANGE: Open Resource for the Application of Neuronal Genome Editing, which mediates targeted genomic integration of epitope tags in rodent dissociated neuronal culture, in organotypic slices, and in vivo. ORANGE includes a knock-in library for in-depth investigation of endogenous protein distribution, viral vectors, and a detailed two-step cloning protocol to develop knock-ins for novel targets. Using ORANGE with (live-cell) superresolution microscopy, we revealed the dynamic nanoscale organization of endogenous neurotransmitter receptors and synaptic scaffolding proteins, as well as previously uncharacterized proteins. Finally, we developed a mechanism to create multiple knock-ins in neurons, mediating multiplex imaging of endogenous proteins. Thus, ORANGE enables quantification of expression, distribution, and dynamics for virtually any protein in neurons at nanoscale resolution.


Assuntos
Sistemas CRISPR-Cas , Epitopos/genética , Edição de Genes/métodos , Neurônios/imunologia , Proteínas/genética , Animais , Células Cultivadas , Dependovirus/genética , Feminino , Técnicas de Introdução de Genes , Genes Reporter , Vetores Genéticos , Genoma , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos Transgênicos , Microscopia de Fluorescência , Imagem Molecular/métodos , Neurônios/fisiologia , Técnicas de Cultura de Órgãos , Proteínas/imunologia , Proteínas/metabolismo , Ratos Wistar , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Análise Espaço-Temporal
3.
Neuron ; 104(6): 1180-1194.e7, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31727549

RESUMO

Memory of cues associated with threat is critical for survival and a leading model for elucidating how sensory information is linked to adaptive behavior by learning. Although the brain-wide circuits mediating auditory threat memory have been intensely investigated, it remains unclear whether the auditory cortex is critically involved. Here we use optogenetic activity manipulations in defined cortical areas and output pathways, viral tracing, pathway-specific in vivo 2-photon calcium imaging, and computational analyses of population plasticity to reveal that the auditory cortex is selectively required for conditioning to complex stimuli, whereas the adjacent temporal association cortex controls all forms of auditory threat memory. More temporal areas have a stronger effect on memory and more neurons projecting to the lateral amygdala, which control memory to complex stimuli through a balanced form of population plasticity that selectively supports discrimination of significant sensory stimuli. Thus, neocortical processing plays a critical role in cued threat memory.


Assuntos
Comportamento Animal/fisiologia , Memória/fisiologia , Neocórtex/fisiologia , Animais , Medo/fisiologia , Aprendizagem/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Neuron ; 100(3): 684-699.e6, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30269988

RESUMO

A wealth of data has elucidated the mechanisms by which sensory inputs are encoded in the neocortex, but how these processes are regulated by the behavioral relevance of sensory information is less understood. Here, we focus on neocortical layer 1 (L1), a key location for processing of such top-down information. Using Neuron-Derived Neurotrophic Factor (NDNF) as a selective marker of L1 interneurons (INs) and in vivo 2-photon calcium imaging, electrophysiology, viral tracing, optogenetics, and associative memory, we find that L1 NDNF-INs mediate a prolonged form of inhibition in distal pyramidal neuron dendrites that correlates with the strength of the memory trace. Conversely, inhibition from Martinotti cells remains unchanged after conditioning but in turn tightly controls sensory responses in NDNF-INs. These results define a genetically addressable form of dendritic inhibition that is highly experience dependent and indicate that in addition to disinhibition, salient stimuli are encoded at elevated levels of distal dendritic inhibition. VIDEO ABSTRACT.


Assuntos
Dendritos/fisiologia , Interneurônios/fisiologia , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Dendritos/química , Interneurônios/química , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos
5.
Cell Rep ; 23(4): 951-958, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29694902

RESUMO

Inhibitory interneurons govern virtually all computations in neocortical circuits and are in turn controlled by neuromodulation. While a detailed understanding of the distinct marker expression, physiology, and neuromodulator responses of different interneuron types exists for rodents and recent studies have highlighted the role of specific interneurons in converting rapid neuromodulatory signals into altered sensory processing during locomotion, attention, and associative learning, it remains little understood whether similar mechanisms exist in human neocortex. Here, we use whole-cell recordings combined with agonist application, transgenic mouse lines, in situ hybridization, and unbiased clustering to directly determine these features in human layer 1 interneurons (L1-INs). Our results indicate pronounced nicotinic recruitment of all L1-INs, whereas only a small subset co-expresses the ionotropic HTR3 receptor. In addition to human specializations, we observe two comparable physiologically and genetically distinct L1-IN types in both species, together indicating conserved rapid neuromodulation of human neocortical circuits through layer 1.


Assuntos
Interneurônios/metabolismo , Neocórtex/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Transmissão Sináptica/fisiologia , Adulto , Animais , Feminino , Humanos , Interneurônios/citologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Neocórtex/citologia , Receptores 5-HT3 de Serotonina/genética
6.
Nat Commun ; 8(1): 293, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28819097

RESUMO

The brain cytoplasmic (BC1) RNA is a non-coding RNA (ncRNA) involved in neuronal translational control. Absence of BC1 is associated with altered glutamatergic transmission and maladaptive behavior. Here, we show that pyramidal neurons in the barrel cortex of BC1 knock out (KO) mice display larger excitatory postsynaptic currents and increased spontaneous activity in vivo. Furthermore, BC1 KO mice have enlarged spine heads and postsynaptic densities and increased synaptic levels of glutamate receptors and PSD-95. Of note, BC1 KO mice show aberrant structural plasticity in response to whisker deprivation, impaired texture novel object recognition and altered social behavior. Thus, our study highlights a role for BC1 RNA in experience-dependent plasticity and learning in the mammalian adult neocortex, and provides insight into the function of brain ncRNAs regulating synaptic transmission, plasticity and behavior, with potential relevance in the context of intellectual disabilities and psychiatric disorders.Brain cytoplasmic (BC1) RNA is a non-coding RNA that has been implicated in translational regulation, seizure, and anxiety. Here, the authors show that in the cortex, BC1 RNA is required for sensory deprivation-induced structural plasticity of dendritic spines, as well as for correct sensory learning and social behaviors.


Assuntos
Aprendizagem/fisiologia , Neocórtex/fisiologia , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , RNA Citoplasmático Pequeno/genética , Animais , Sequência de Bases , Células Cultivadas , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/fisiologia , Potenciais Pós-Sinápticos Excitadores/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hibridização in Situ Fluorescente , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Neocórtex/citologia , Neocórtex/metabolismo , Plasticidade Neuronal/genética , Células Piramidais/metabolismo , Células Piramidais/ultraestrutura , Privação Sensorial/fisiologia , Homologia de Sequência do Ácido Nucleico , Comportamento Social , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Vibrissas/metabolismo , Vibrissas/fisiologia
7.
Nat Neurosci ; 17(12): 1693-700, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25402856

RESUMO

Deficiencies in fragile X mental retardation protein (FMRP) are the most common cause of inherited intellectual disability, fragile X syndrome (FXS), with symptoms manifesting during infancy and early childhood. Using a mouse model for FXS, we found that Fmrp regulates the positioning of neurons in the cortical plate during embryonic development, affecting their multipolar-to-bipolar transition (MBT). We identified N-cadherin, which is crucial for MBT, as an Fmrp-regulated target in embryonic brain. Furthermore, spontaneous network activity and high-resolution brain imaging revealed defects in the establishment of neuronal networks at very early developmental stages, further confirmed by an unbalanced excitatory and inhibitory network. Finally, reintroduction of Fmrp or N-cadherin in the embryo normalized early postnatal neuron activity. Our findings highlight the critical role of Fmrp in the developing cerebral cortex and might explain some of the clinical features observed in patients with FXS, such as alterations in synaptic communication and neuronal network connectivity.


Assuntos
Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Proteína do X Frágil da Deficiência Intelectual/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Rede Nervosa/citologia , Técnicas de Cultura de Órgãos , Gravidez , Córtex Somatossensorial/citologia
8.
J Physiol ; 592(19): 4155-64, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24879871

RESUMO

Acetylcholine is a crucial neuromodulator for attention, learning and memory. Release of acetylcholine in primary sensory cortex enhances processing of sensory stimuli, and many in vitro studies have pinpointed cellular mechanisms that could mediate this effect. In contrast, how cholinergic modulation shapes the function of intact circuits during behaviour is only beginning to emerge. Here we review recent data on the recruitment of identified interneuron types in neocortex by cholinergic signalling, obtained with a combination of genetic targeting of cell types, two-photon imaging and optogenetics. These results suggest that acetylcholine release during basal forebrain stimulation, and during physiological recruitment of the basal forebrain, can strongly and rapidly influence the firing of neocortical interneurons. In contrast to the traditional view of neuromodulation as a relatively slow process, cholinergic signalling can thus rapidly convey time-locked information to neocortex about the behavioural state of the animal and the occurrence of salient sensory stimuli. Importantly, these effects strongly depend on interneuron type, and different interneuron types in turn control distinct aspects of circuit function. One prominent effect of phasic acetylcholine release is disinhibition of pyramidal neurons, which can facilitate sensory processing and associative learning.


Assuntos
Acetilcolina/metabolismo , Aprendizagem por Associação/fisiologia , Interneurônios/metabolismo , Neocórtex/metabolismo , Animais
9.
Artigo em Inglês | MEDLINE | ID: mdl-24653678

RESUMO

Acetylcholine (ACh) release in the medial prefrontal cortex (mPFC) is crucial for normal cognitive performance. Despite the fact that many have studied how ACh affects neuronal processing in the mPFC and thereby influences attention behavior, there is still a lot unknown about how this occurs. Here we will review the evidence that cholinergic modulation of the mPFC plays a role in attention and we will summarize the current knowledge about the role between ACh receptors (AChRs) and behavior and how ACh receptor activation changes processing in the cortical microcircuitry. Recent evidence implicates fast phasic release of ACh in cue detection and attention. This review will focus mainly on the fast ionotropic nicotinic receptors and less on the metabotropic muscarinic receptors. Finally, we will review limitations of the existing studies and address how innovative technologies might push the field forward in order to gain understanding into the relation between ACh, neuronal activity and behavior.


Assuntos
Acetilcolina/metabolismo , Atenção/fisiologia , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Humanos
10.
Biochem Pharmacol ; 86(8): 1089-98, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23856288

RESUMO

Attention is a central cognitive function that enables long-term engagement in a task and suppression of irrelevant information to obtain future goals. The prefrontal cortex (PFC) is the main link in integrating emotional and motivational state of an animal to regulate top-down attentional processes. Acetylcholine modulates PFC neuronal networks by activating nicotinic acetylcholine receptors (nAChRs) to support attention. However, how neuronal activity changes in the PFC during attention and which nAChR subtypes mediate this is only rudimentarily understood, but progress is being made. Recently, exciting new insights were obtained in the dynamics of cholinergic signaling in the PFC and modes of acetylcholine transmission via nAChRs in the cortex. In addition, mechanisms are uncovered on how the PFC circuitry is regulated by nAChRs. Novel studies show that endogenous activation of nAChRs in the PFC plays a central role in controlling attention. Here, we review current insights into how different subtypes of nAChRs expressed by distinct types of neurons in the PFC circuitry shape attention. In addition we discuss the impact of nicotine on the cholinergic system and prefrontal cortical circuits. Low concentrations of nicotine, as experienced by smokers, interfere with cholinergic signaling. In the long-term exposure to nicotine during adolescence leads to maladaptive adaptations of the PFC circuitry, which ultimately leads to a decrement in attention performance, again emphasizing the importance of nAChRs in attention.


Assuntos
Atenção/fisiologia , Neurônios/fisiologia , Receptores Nicotínicos/metabolismo , Animais , Regulação da Expressão Gênica/fisiologia , Receptores Nicotínicos/genética
11.
J Neurosci ; 33(11): 4843-53, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23486955

RESUMO

Adolescence is a period in which the developing prefrontal cortex (PFC) is sensitive to maladaptive changes when exposed to nicotine. Nicotine affects PFC function and repeated exposure to nicotine during adolescence impairs attention performance and impulse control during adulthood. Nicotine concentrations experienced by smokers are known to desensitize nicotinic acetylcholine receptors (nAChRs), but the impact thereof on PFC circuits is poorly understood. Here, we investigated how smoking concentrations of nicotine (100-300 nm) interfere with cholinergic signaling in the mouse PFC. nAChR desensitization depends on subunit composition. Since nAChR subunits are differentially expressed across layers of the PFC neuronal network, we hypothesized that cholinergic signaling through nAChRs across layers would suffer differentially from exposure to nicotine. Throughout the PFC, nicotine strongly desensitized responses to ACh in neurons expressing ß2* nAChRs, whereas ACh responses mediated by α7 nAChRs were not hampered. The amount of desensitization of ß2* nAChR currents depended on neuron type and cortical layer. ß2*-mediated responses of interneurons in LII-III and LVI completely desensitized, while cholinergic responses in LV interneurons and LVI pyramidal cells showed less desensitization. This discrepancy depended on α5 subunit expression. Two-photon imaging of neuronal population activity showed that prolonged exposure to nicotine limited cholinergic signaling through ß2* nAChRs to deep PFC layers where α5 subunits were expressed. Together, our results demonstrate a layer-dependent decrease in cholinergic activation of the PFC through nAChRs by nicotine. These mechanisms may be one of the first steps leading up to the pathophysiological changes associated with nicotine exposure during adolescence.


Assuntos
Acetilcolina/metabolismo , Rede Nervosa/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Acetilcolina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Análise de Variância , Animais , Animais Recém-Nascidos , Bicuculina/farmacologia , Cálcio/metabolismo , Inibidores da Colinesterase/farmacologia , Di-Hidro-beta-Eritroidina/farmacologia , Relação Dose-Resposta a Droga , Estimulação Elétrica , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Galantamina/farmacologia , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Córtex Pré-Frontal/anatomia & histologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/crescimento & desenvolvimento , Quinoxalinas/farmacologia , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7
12.
Cereb Cortex ; 23(1): 148-61, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22291029

RESUMO

Acetylcholine signaling through nicotinic receptors (nAChRs) in the prefrontal cortex (PFC) is crucial for attention. Nicotinic AChRs are expressed on glutamatergic inputs to layer V (LV) cells and on LV interneurons and LVI pyramidal neurons. Whether PFC layers are activated by nAChRs to a similar extent or whether there is layer-specific activation is not known. Here, we investigate nAChR modulation of all PFC layers and find marked layer specificity for pyramidal neurons: LII/III pyramidal neurons and glutamatergic inputs to these cells do not contain nAChRs, LV and LVI pyramidal neurons are modulated by α7 and ß2* nAChRs, respectively. Interneurons across layers contain mixed combinations of nAChRs. We then tested the hypothesis that nAChRs activate the PFC in a layer-specific manner using 2-photon population imaging. In all layers, nAChR-induced neuronal firing was dominated by ß2* nAChRs. In LII/III, only interneurons were activated. In LV and LVI, both interneurons and pyramidal neurons were activated, the latter most strongly in LVI. Together, these results suggest that in the PFC nAChR activation results in inhibition of LII/III pyramidal neurons. In LV and LVI, nAChR-induced activation of inhibitory and excitatory neurons results in a net augmentation of output neuron activity.


Assuntos
Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Receptores Nicotínicos/metabolismo , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Tecidual , Receptor Nicotínico de Acetilcolina alfa7
13.
Science ; 333(6044): 888-91, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21836018

RESUMO

More than one-third of all people are estimated to experience mild to severe cognitive impairment as they age. Acetylcholine (ACh) levels in the brain diminish with aging, and nicotinic ACh receptor (nAChR) stimulation is known to enhance cognitive performance. The prefrontal cortex (PFC) is involved in a range of cognitive functions and is thought to mediate attentional focus. We found that mice carrying nAChR ß2-subunit deletions have impaired attention performance. Efficient lentiviral vector-mediated reexpression of functional ß2-subunit-containing nAChRs in PFC neurons of the prelimbic area (PrL) completely restored the attentional deficit but did not affect impulsive and motivational behavior. Our findings show that ß2-subunit expression in the PrL PFC is sufficient for endogenous nAChR-mediated cholinergic regulation of attentional performance.


Assuntos
Atenção , Cognição , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Receptores Nicotínicos/metabolismo , Acetilcolina/metabolismo , Animais , Comportamento Animal , Deleção de Genes , Masculino , Camundongos , Camundongos Knockout , Motivação , Técnicas de Patch-Clamp , Tempo de Reação , Receptores Nicotínicos/genética , Transdução Genética
14.
Biochem Pharmacol ; 78(7): 668-76, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19426718

RESUMO

Nicotine enhances cognitive performance in humans and laboratory animals. The immediate positive actions of nicotine on learning, memory and attention are well-documented. Several brain areas involved in cognition, such as the prefrontal cortex, have been implicated. Besides acute effects on these brain areas and on brain function, a picture is emerging showing that long-term consequences of nicotine exposure during adolescence can be detrimental for cognitive performance. The majority of adult smokers started the habit during adolescence. Our knowledge on the types of nicotinic receptors in the brain areas that are candidates for mediating nicotine's effects is increasing. However, much less is known about the underlying cellular mechanisms. A series of recent studies have uncovered exciting features of the mechanisms by which nicotine alters prefrontal cortex neuronal activity, synaptic plasticity, gene expression and cognitive function, and how these changes may have a lasting effect on the developing brain. In this review, we discuss these exciting findings and identify several common principles by which nicotinic receptor activation modulates cortical circuits involved in cognition. Understanding how nicotine induces long-term changes in neuronal circuits and alters plasticity in the prefrontal cortex is essential to determining how these mechanisms interact to alter cognition.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Cognição/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/fisiologia , Adolescente , Animais , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/fisiologia , Expressão Gênica , Humanos , Interneurônios/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/fisiologia , Nicotina/efeitos adversos , Agonistas Nicotínicos/efeitos adversos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/fisiologia , Sinapses/fisiologia , Tálamo/efeitos dos fármacos , Tálamo/fisiologia
15.
Neuron ; 54(1): 73-87, 2007 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-17408579

RESUMO

Nicotine enhances attention and working memory by activating nicotinic acetylcholine receptors (nAChRs). The prefrontal cortex (PFC) is critical for these cognitive functions and is also rich in nAChR expression. Specific cellular and synaptic mechanisms underlying nicotine's effects on cognition remain elusive. Here we show that nicotine exposure increases the threshold for synaptic spike-timing-dependent potentiation (STDP) in layer V pyramidal neurons of the mouse PFC. During coincident presynaptic and postsynaptic activity, nicotine reduces dendritic calcium signals associated with action potential propagation by enhancing GABAergic transmission. This results from a series of presynaptic actions involving different PFC interneurons and multiple nAChR subtypes. Pharmacological block of nAChRs or GABA(A) receptors prevented nicotine's actions and restored STDP, as did increasing dendritic calcium signals with stronger postsynaptic activity. Thus, by activating nAChRs distributed throughout the PFC neuronal network, nicotine affects PFC information processing and storage by increasing the amount of postsynaptic activity necessary to induce STDP.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Córtex Pré-Frontal/citologia , Animais , Animais Recém-Nascidos , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Interações Medicamentosas , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Antagonistas GABAérgicos/farmacologia , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/classificação , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA