Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 2298, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145116

RESUMO

Our porous V2O5/TiO2 nanoheterostructure films (with a Ti/V atomic ratio of 1:1) were fabricated via a single-step sparking method using a strong magnetic field (0.5 T) without annealing requirement for the first time. We found that the magnetic flux arrangement has effect on film crystallization, unique morphology, large specific surface area, and surprisingly controllable phase structure of the films. An amorphous TV film was transformed to the TiO2 (anatase/rutile) phase (for TVN) and V2O5-VO2 mixed-phase (for TVH) without destroying the mesopores from an annealing process. Moreover, the TVH sample able to improve the degradation rate up to 270% compared with pre-annealed TV films and up to 30% with post-annealed (400 °C) TVA films. In this paper, the influence of magnetic flux arrangement on structural, morphological, optical, and photocatalytic properties of prepared sample have been investigated and reported.

2.
Molecules ; 25(15)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707984

RESUMO

Porous V2O5/TiO2 nanoheterostructure films with different atomic ratios of Ti/V (4:1, 2:1, 1:1, and 1:2) were synthesized by a sparking method for the first time. The sparking method, which is a simple and cost-effective process, can synthesize highly porous and composite films in one step. Field-emission scanning electron microscope (FE-SEM) images revealed the porosity morphology of all prepared samples. V2O5/TiO2 nanoheterostructure films were confirmed by Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM), and X-ray photoelectron spectroscopy (XPS). The secondary particle size and band gap of the samples were highly correlated to the V2O5 proportion, resulting in enhanced visible-light absorbance. V2O5/TiO2 nanoheterostructure films at an atomic ratio of 1:1 showed the highest photocatalytic performance, which improved the degradation rate up to 24% compared to pure TiO2 film. It is believed that the formed nanoheterostructure and greater portion of V4+ ions are reflected by this ratio.


Assuntos
Azul de Metileno/química , Nanocompostos/química , Titânio/química , Compostos de Vanádio/química , Poluentes Químicos da Água/química , Melhoramento Biomédico , Luz , Processos Fotoquímicos , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA