Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4125, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750061

RESUMO

Skeletal modifications enable elegant and rapid access to various derivatives of a compound that would otherwise be difficult to prepare. They are therefore a powerful tool, especially in the synthesis of natural products or drug discovery, to explore different natural products or to improve the properties of a drug candidate starting from a common intermediate. Inspired by the biosynthesis of the cephalotane natural products, we report here a single-atom insertion into the framework of the benzenoid subfamily, providing access to the troponoid congeners - representing the reverse of the proposed biosynthesis (i.e., a contra-biosynthesis approach). Computational evaluation of our designed transformation prompted us to investigate a Büchner-Curtius-Schlotterbeck reaction of a p-quinol methylether, which ultimately results in the synthesis of harringtonolide in two steps from cephanolide A, which we had previously prepared. Additional computational studies reveal that unconventional selectivity outcomes are driven by the choice of a Lewis acid and the nucleophile, which should inform further developments of these types of reactions.


Assuntos
Produtos Biológicos , Produtos Biológicos/química , Produtos Biológicos/síntese química , Estrutura Molecular
2.
Angew Chem Int Ed Engl ; 62(50): e202313037, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37818778

RESUMO

Mild strategies for the selective modification of peptides and proteins are in demand for applications in therapeutic peptide and protein discovery, and in the study of fundamental biomolecular processes. Herein, we describe the development of an electrochemical selenoetherification (e-SE) platform for the efficient site-selective functionalization of polypeptides. This methodology utilizes the unique reactivity of the 21st amino acid, selenocysteine, to effect formation of valuable bioconjugates through stable selenoether linkages under mild electrochemical conditions. The power of e-SE is highlighted through late-stage C-terminal modification of the FDA-approved cancer drug leuprolide and assembly of a library of anti-HER2 affibody conjugates bearing complex cargoes. Following assembly by e-SE, the utility of functionalized affibodies for in vitro imaging and targeting of HER2 positive breast and lung cancer cell lines is also demonstrated.


Assuntos
Antineoplásicos , Selenocisteína , Selenocisteína/química , Peptídeos/química , Proteínas , Linhagem Celular
3.
J Am Chem Soc ; 145(30): 16508-16516, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37471704

RESUMO

Enantioenriched organoboron intermediates are important building blocks in organic synthesis and drug discovery. Recently, transition metal-catalyzed enantioselective 1,2-metalate rearrangements of alkenylboronates have emerged as an attractive protocol to access these valuable reagents by installing two different carbon fragments across C═C π-bonds. Herein, we report the development of an iridium-catalyzed asymmetric allylation-induced 1,2-metalate rearrangement of bicyclo[1.1.0]butyl (BCB) boronate complexes enabled by strain release, which allows asymmetric difunctionalization of C-C σ-bonds, including dicarbonation and carboboration. This protocol provides a variety of enantioenriched three-dimensional 1,1,3-trisubstituted cyclobutane products bearing a boronic ester that can be readily derivatized. Notably, the reaction gives trans diastereoisomers that result from an anti-addition across the C-C σ-bond, which is in contrast to the syn-additions observed for reactions promoted by PdII-aryl complexes and other electrophiles in our previous works. The diastereoselectivity has been rationalized based on a combination of experimental data and density functional theory calculations, which suggest that the BCB boronate complexes are highly nucleophilic and react via early transition states with low activation barriers.

4.
Nature ; 615(7952): 430-435, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36922609

RESUMO

The control of tetrahedral carbon stereocentres remains a focus of modern synthetic chemistry and is enabled by their configurational stability. By contrast, trisubstituted nitrogen1, phosphorus2 and sulfur compounds3 undergo pyramidal inversion, a fundamental and well-recognized stereochemical phenomenon that is widely exploited4. However, the stereochemistry of oxonium ions-compounds bearing three substituents on a positively charged oxygen atom-is poorly developed and there are few applications of oxonium ions in synthesis beyond their existence as reactive intermediates5,6. There are no examples of configurationally stable oxonium ions in which the oxygen atom is the sole stereogenic centre, probably owing to the low barrier to oxygen pyramidal inversion7 and the perception that all oxonium ions are highly reactive. Here we describe the design, synthesis and characterization of a helically chiral triaryloxonium ion in which inversion of the oxygen lone pair is prevented through geometric restriction to enable it to function as a determinant of configuration. A combined synthesis and quantum calculation approach delineates design principles that enable configurationally stable and room-temperature isolable salts to be generated. We show that the barrier to inversion is greater than 110 kJ mol-1 and outline processes for resolution. This constitutes, to our knowledge, the only example of a chiral non-racemic and configurationally stable molecule in which the oxygen atom is the sole stereogenic centre.

5.
Angew Chem Int Ed Engl ; 62(29): e202302418, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37000422

RESUMO

Benzothiophenes, activated by oxidation to the corresponding S-oxides, undergo C-H/C-H-type coupling with phenols to give C4 arylation products. While an electron-withdrawing group at C3 of the benzothiophene is important, the process operates without a directing group and a metal catalyst, thus rendering it compatible with sensitive functionalities-e.g. halides and formyl groups. Quantum chemical calculations suggest a formal stepwise mechanism involving heterolytic cleavage of an aryloxysulfur species to give a π-complex of the corresponding benzothiophene and a phenoxonium cation. Subsequent addition of the phenoxonium cation to the C4 position of the benzothiophene is favored over the addition to C3; Fukui functions predict that the major regioisomer is formed at the more electron-rich position between C3 and C4. Varied selective manipulation of the benzothiophene products showcase the synthetic utility of the metal-free arylation process.

6.
J Am Chem Soc ; 145(1): 171-178, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36571763

RESUMO

Controlling absolute stereochemistry in catalytic photochemical reactions is generally challenging owing to high rates of background reactivity. Successful strategies broadly rely on selective excitation of the reaction substrate when associated with a chiral catalyst. Recent studies have demonstrated that chiral Lewis acid complexes can enable selective energy transfer from a photosensitizer to facilitate enantioselective triplet state reactions. Here, we apply this approach to the enantioselective catalysis of a 6π photocyclization through the design of an iridium photosensitizer optimized to undergo energy transfer to a reaction substrate only in the presence of a chiral Lewis acid complex. Among a group of iridium(III) sensitizers, enantioselectivity and yield closely correlate with photocatalyst triplet energy within a narrow window enabled by a modest reduction in substrate triplet energy upon binding a scandium/ligand complex. These results demonstrate that photocatalyst tuning offers a means to suppress background reactivity and improve enantioselectivity in photochemical reactions.


Assuntos
Irídio , Ácidos de Lewis , Ácidos de Lewis/química , Irídio/química , Estereoisomerismo , Fármacos Fotossensibilizantes , Catálise
7.
Angew Chem Int Ed Engl ; 59(51): 23020-23024, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-32856748

RESUMO

The [2+2] photocycloaddition is the most valuable and intensively investigated photochemical process. Here we demonstrate that irradiation of N-acryloyl heterocycles with blue LED light (440 nm) in the presence of an IrIII complex leads to efficient and high yielding fused γ-lactam formation across a range of substituted heterocycles. Quantum calculations show that the reaction proceeds via cyclization in the triplet excited state to yield a 1,4-diradical; intersystem crossing leads preferentially to the closed shell singlet zwitterion. This is geometrically restricted from undergoing recombination to yield a cyclobutane by the planarity of the amide substituent. A prototropic shift leads to the observed bicyclic products in what can be viewed as an interrupted [2+2] cycloaddition.

8.
J Org Chem ; 82(22): 11933-11938, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-28845673

RESUMO

A one-pot domino N-arylation protocol is described using diaryliodonium reagents under copper catalysis. The reaction uses both aryl groups of the diaryliodonium reagent to generate triarylamines starting from simple anilines, representing an atom-economical preparation of an important class of organic material building blocks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA