Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genet Sel Evol ; 56(1): 20, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504219

RESUMO

BACKGROUND: Resilience is the capacity of an animal to be minimally affected by disturbances or to rapidly return to its initial state before exposure to a disturbance. Resilient livestock are desired because of their improved health and increased economic profit. Genetic improvement of resilience may also lead to trade-offs with production traits. Recently, resilience indicators based on longitudinal data have been suggested, but they need further evaluation to determine whether they are indeed predictive of improved resilience, such as disease resilience. This study investigated different resilience indicators based on deviations between expected and observed egg production (EP) by exploring their genetic parameters, their possible trade-offs with production traits, and their relationships with antibody traits in chickens. METHODS: Egg production in a nucleus breeding herd environment based on 1-week-, 2-week-, or 3-week-intervals of two purebred chicken lines, a white egg-laying (33,825 chickens) and a brown egg-laying line (34,397 chickens), were used to determine deviations between observed EP and expected average batch EP, and between observed EP and expected individual EP. These deviations were used to calculate three types of resilience indicators for two life periods of each individual: natural logarithm-transformed variance (ln(variance)), skewness, and lag-one autocorrelation (autocorrelation) of deviations from 25 to 83 weeks of age and from 83 weeks of age to end of life. Then, we estimated their genetic correlations with EP traits and with two antibody traits. RESULTS: The most promising resilience indicators were those based on 1-week-intervals, as they had the highest heritability estimates (0.02-0.12) and high genetic correlations (above 0.60) with the same resilience indicators based on longer intervals. The three types of resilience indicators differed genetically from each other, which indicates that they possibly capture different aspects of resilience. Genetic correlations of the resilience indicator traits based on 1-week-intervals with EP traits were favorable or zero, which means that trade-off effects were marginal. The resilience indicator traits based on 1-week-intervals also showed no genetic correlations with the antibody traits, which suggests that they are not informative for improved immunity or vice versa in the nucleus environment. CONCLUSIONS: This paper gives direction towards the evaluation and implementation of resilience indicators, i.e. to further investigate resilience indicator traits based on 1-week-intervals, in breeding programs for selecting genetically more resilient layer chickens.


Assuntos
Galinhas , Resiliência Psicológica , Animais , Galinhas/genética , Oviposição/genética , Anticorpos/genética , Fenótipo
2.
Genet Sel Evol ; 54(1): 21, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35287581

RESUMO

BACKGROUND: Resilient animals are minimally affected by disturbances, such as diseases and heat stress, and quickly recover. Daily activity data can potentially indicate resilience, because resilient animals likely keep variations due to disturbances that threat animal homeostasis at a low magnitude. We used daily step count of cows to define resilience indicators based on theory, exploratory analysis and literature, and then investigated if they can be used to genetically improve resilience by estimating heritability and repeatability, and genetic associations with other resilience-related traits, i.e. health traits, longevity, fertility, and body condition score (BCS). RESULTS: Two groups of resilience indicators were defined: indicators describing (1) mean step count at different lactation stages for individual cows, and (2) fluctuations in step count from individual step count curves. Heritability estimates were highest for resilience indicators describing mean step count, from 0.22 for the 2-week period pre-partum to 0.45 for the whole lactation. High mean step count was consistently, but weakly, genetically correlated with good health, fertility, and longevity, and high BCS. Heritability estimates of resilience indicators describing fluctuations ranged from 0.01 for number of step count drops to 0.15 for the mean of negative residuals from individual curves. Genetic correlations with health traits, longevity, fertility, and BCS were mostly weak, but were moderate and favorable for autocorrelation of residuals (- 0.33 to - 0.44) and number of step count drops (- 0.44 to - 0.56) with hoof health, fertility, and BCS. Resilience indicators describing variability of residuals and mean of negative residuals showed strong genetic correlations with mean step count (0.86 to 0.95, absolute), which suggests that adjustment for step count level is needed. After adjustment, 'mean of negative residuals' was highly genetically correlated with hoof health, fertility, and BCS. CONCLUSIONS: Mean step count, autocorrelation and mean of negative residuals showed most potential as resilience indicators based on resilience theory, heritability, and genetic associations with health, fertility, and body condition score. Other resilience indicators were heritable, but had unfavorable genetic correlations with several health traits. This study is an important first step in the exploration of the use of activity data to breed more resilient livestock.


Assuntos
Fertilidade , Lactação , Animais , Bovinos/genética , Feminino , Fertilidade/genética , Lactação/genética , Longevidade/genética , Fenótipo
3.
Front Genet ; 9: 692, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30693014

RESUMO

Resilience is the capacity of an animal to be minimally affected by disturbances or to rapidly return to the state pertained before exposure to a disturbance. However, indicators for general resilience to environmental disturbances have not yet been defined, and perhaps therefore resilience is not yet included in breeding goals. The current developments on big data collection give opportunities to determine new resilience indicators based on longitudinal data, which can aid to incorporate resilience in animal breeding goals. The objectives of this paper were: (1) to define resilience indicator traits based on big data, (2) to define economic values for resilience, and (3) to show the potential to improve resilience of livestock through inclusion of resilience in breeding goals. Resilience might be measured based on deviations from expected production levels over a period of time. Suitable resilience indicators could be the variance of deviations, the autocorrelation of deviations, the skewness of deviations, and the slope of a reaction norm. These (new) resilience indicators provide opportunity to include resilience in breeding programs. Economic values of resilience indicators in the selection index can be calculated based on reduced costs due to labor and treatments. For example, when labor time is restricted, the economic value of resilience increases with an increasing number of animals per farm, and can become as large as the economic value of production. This shows the importance of including resilience in breeding goals. Two scenarios were described to show the additional benefit of including resilience in breeding programs. These examples showed that it is hard to improve resilience with only production traits in the selection index, but that it is possible to greatly improve resilience by including resilience indicators in the selection index. However, when health-related traits are already present in the selection index, the effect is smaller. Nevertheless, inclusion of resilience indicators in the selection index increases the response in the breeding goal and resilience, which results in less labor-demanding, and thus easier-to-manage livestock. Current developments on massive collection of data, and new phenotypes based on these data, offer exciting opportunities to breed for improved resilience of livestock.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA