Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Chem ; 67(4): 2584-2601, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38305199

RESUMO

A series of 28 compounds, 3-nitro-1H-1,2,4-triazole, were synthesized by click-chemistry with diverse substitution patterns using medicinal chemistry approaches, such as bioisosterism, Craig-plot, and the Topliss set with excellent yields. Overall, the analogs demonstrated relevant in vitro antitrypanosomatid activity. Analog 15g (R1 = 4-OCF3-Ph, IC50 = 0.09 µM, SI = >555.5) exhibited an outstanding antichagasic activity (Trypanosoma cruzi, Tulahuen LacZ strain) 68-fold more active than benznidazole (BZN, IC50 = 6.15 µM, SI = >8.13) with relevant selectivity index, and suitable LipE = 5.31. 15g was considered an appropriate substrate for the type I nitro reductases (TcNTR I), contributing to a likely potential mechanism of action for antichagasic activity. Finally, 15g showed nonmutagenic potential against Salmonella typhimurium strains (TA98, TA100, and TA102). Therefore, 3-nitro-1H-1,2,4-triazole 15g is a promising antitrypanosomatid candidate for in vivo studies.


Assuntos
Doença de Chagas , Leishmaniose , Tripanossomicidas , Trypanosoma cruzi , Humanos , Relação Estrutura-Atividade , Doença de Chagas/tratamento farmacológico , Triazóis/química
2.
Eur J Med Chem ; 260: 115451, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37573209

RESUMO

Chagas disease and leishmaniasis are neglected diseases of high priority as a public health problem. Pharmacotherapy is based on the administration of a few drugs, which exhibit hazardous adverse effects and toxicity to the patients. Thus, the search for new antitrypanosomatid drugs is imperative to overcome the limitations of the treatments. In this work, 46 2-nitroimidazole 3,5-disubstituted isoxazole compounds were synthesized in good yields by [3 + 2] cycloaddition reaction between terminal acetylene (propargyl-2-nitroimidazole) and chloro-oximes. The compounds were non-toxic to LLC-MK2 cells. Compounds 30, 35, and 44 showed in vitro antichagasic activity, 15-fold, 12-fold, and 10-fold, respectively, more active than benznidazole (BZN). Compounds 30, 35, 44, 45, 53, and 61 acted as substrates for the TcNTR enzyme, indicating that this might be one of the mechanisms of action involved in their antiparasitic activity. Piperazine series and 4-monosubstituted compounds were potent against T. cruzi parasites. Besides the in vitro activity observed in compound 45, the in vivo assay showed that the compound only reduced the parasitemia levels by the seventh-day post-infection (77%, p > 0.001) compared to the control group. However, 45 significantly reduced the parasite load in cardiac tissue (p < 0.01) 11 days post-infection. Compounds 49, 52, and 54 showed antileishmanial activity against intracellular amastigotes of Leishmania (L.) amazonensis at the same range as amphotericin B. These findings highlight the antitrypanosomatid properties of 2-nitroimidazole 3,5-disubstituted isoxazole compounds and the possibility in using them as antitrypanosomatid agents in further studies.


Assuntos
Antiprotozoários , Doença de Chagas , Nitroimidazóis , Trypanosoma cruzi , Humanos , Antiprotozoários/química , Doença de Chagas/tratamento farmacológico , Isoxazóis/química , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Relação Estrutura-Atividade , Reação de Cicloadição
3.
Arch Pharm (Weinheim) ; 356(4): e2200472, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36534890

RESUMO

Chagas disease (CD) is a neglected disease caused by the protozoan Trypanosoma cruzi. The two drugs used in the treatment schedules exhibit adverse effects and severe toxicity. Thus, searching for new antitrypanosomal agents is urgent to provide improved treatments to those affected by this disease. 5-Nitrofuran-isoxazole analogs were synthesized by cycloaddition reactions [3+2] between chloro-oximes and acetylenes in satisfactory yields. We analyzed the structure-activity relationship of the analogs based on Hammett's and Hansch's parameters. The 5-nitrofuran-isoxazole analogs exhibited relevant in vitro antitrypanosomal activity against the amastigote forms of T. cruzi. Analog 7s was the trending hit of the series, showing an IC50 value of 40 nM and a selectivity index of 132.50. A possible explanation for this result may be the presence of an electrophile near the isoxazole core. Moreover, the most active analogs proved to act as an in vitro substrate of type I nitroreductase rather than the cruzain, enzymes commonly investigated in molecular target studies of CD drug discovery. These findings suggest that 5-nitrofuran-isoxazole analogs are promising in the studies of agents for CD treatment.


Assuntos
Nitrofuranos , Tripanossomicidas , Trypanosoma cruzi , Relação Estrutura-Atividade , Isoxazóis/farmacologia , Isoxazóis/química , Reposicionamento de Medicamentos , Nitrofuranos/farmacologia , Nitrofuranos/química , Tripanossomicidas/farmacologia , Tripanossomicidas/química
4.
Bioorg Med Chem ; 29: 115855, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33199200

RESUMO

Despite the serious public health problems caused by Chagas disease in several countries, the available therapy remains with only two drugs that are poorly active during the chronic phase of the disease in addition to having severe side effects. In search of new trypanocidal agents, herein we describe the synthesis and biological evaluation of eleven new 1,6-diphenyl-1H-pyrazolo[3,4-b]pyridine compounds containing the carbohydrazide or the 2,3-dihydro-1,3,4-oxadiazole moieties. Two of them showed promising in vitro activity against amastigote forms of T. cruzi and were evaluated in vivo in male BALB/c mice infected with T. cruzi Y strain. Our results suggest that the substitution at the C-2 position of the phenyl group connected to the carbohydrazide or to the 2,3-dihydro-1,3,4-oxadiazole moieties plays an important role in the trypanocidal activity of this class of compounds. Moreover, the compound containing the 2,3-dihydro-1,3,4-oxadiazole moiety has demonstrated more favorable structural requirements for in vivo activity than its carbohydrazide analog.


Assuntos
Doença de Chagas/tratamento farmacológico , Pirazóis/farmacologia , Piridinas/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Doença de Chagas/patologia , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Testes de Sensibilidade Parasitária , Pirazóis/síntese química , Pirazóis/química , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/química
5.
ChemMedChem ; 15(21): 2019-2028, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32729242

RESUMO

Chagas disease affects 6-8 million people worldwide, remaining a public health concern. Toxicity, several adverse effects and inefficiency in the chronic stage of the disease are the major challenges regarding the available treatment protocols. This work involved the synthesis of twenty-two 1,4-disubstituted-1,2,3-triazole analogues of benznidazole (BZN), by using a click chemistry strategy. Analogues were obtained in moderate to good yields (40-97 %). Antitrypanosomal activity was evaluated against the amastigote forms of Trypanosoma cruzi. Compound 8 a (4-(2-nitro-1H-imidazol-1-yl)methyl)-1-phenyl-1H-1,2,3-triazole) without substituents on phenyl ring showed similar biological activity to BZN (IC50 =3.0 µM, SI>65.3), with an IC50 =3.1 µM and SI>64.5. Compound 8 o (3,4-di-OCH3 -Ph) with IC50 = 0.65 µM was five-fold more active than BZN, and showed an excellent selectivity index (SI>307.7). Compound 8 v (3-NO2 , 4-CH3 -Ph) with IC50 =1.2 µM and relevant SI>166.7, also exhibited higher activity than BZN. SAR analysis exhibited a pattern regarding antitrypanosomal activity relative to BZN, in compounds with electron-withdrawing groups (Hammett σ+) at position 3, and electron-donating groups (Hammett σ-) at position 4, as observed in 8 o and 8 v. Further research might explore in vivo antitrypanosomal activity of promising analogues 8 a, 8 o, and 8 v. Overall, this study indicates that approaches such as the bioisosteric replacement of amide group by 1,2,3-triazole ring, the use of click chemistry as a synthesis strategy, and design tools like Craig-plot and Topliss tree are promising alternatives to drug discovery.


Assuntos
Nitroimidazóis/farmacologia , Triazóis/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Células Cultivadas , Macaca mulatta , Estrutura Molecular , Nitroimidazóis/química , Testes de Sensibilidade Parasitária , Triazóis/síntese química , Triazóis/química , Tripanossomicidas/síntese química , Tripanossomicidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA