Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
3D Print Med ; 10(1): 11, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587709

RESUMO

Multi-laser Additive Manufacturing systems hold great potential to increase productivity. However, adding multiple energy sources to a powder bed fusion system requires careful selection of a laser scan and inert gas flow strategy to optimize component performance. In this work, we explore four different laser scan and argon flow strategies on the quasi-static compressive mechanical response of Body Centered Cubic lattices. Three strategies employ a swim lane method where laser pathing tends to progress parallel to argon flow. Method one only uses a single laser while method two uses four, both with the laser path working against the argon flow. The third method uses four lasers, each operating in their own lane like the second method, but the laser pathing progresses with the argon flow. The fourth method has all four lasers operating in quadrants and the laser pathing trends against the argon flow.The single-laser strategy generally had the lowest mechanical responses compared to the other three strategies. A quadrant strategy generally had the highest quasi-static mechanical responses and was at least 25% greater in stiffness, yield force, ultimate force, and energy absorption when compared to the single laser strategy. However, the four-laser swim strategy where the laser pathing tends against the argon flow was found to be statistically similar to the quadrant strategy. It is hypothesized that spatter introduced onto the powder layer from the melt pool and particle entrainment may be worse for laser pathing which trends with the argon flow direction. Additionally, the additional energy added to the build volume helps to mitigate inter-layer cool time which reduces temperature gradients. This shows that multi-laser AM systems have an impact on part performance and potentially shows lattices built with multi-laser AM systems may have certain advantages over single-laser AM systems.

2.
J Mech Behav Biomed Mater ; 125: 104869, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653900

RESUMO

Lattice structures are used in a multitude of applications from medical to aerospace, and their adoption in these applications has been further enabled by additive manufacturing. Lattice performance is governed by a multitude of variables and estimating this performance may be needed during various phases of the design and validation process. Numerical modeling and constitutive relationships are common methodologies to assess performance, address risks, lower costs, and accelerate time to market for innovative and potentially life altering products. These methods are usually accompanied by engineering rationales to justify the methods appropriateness. However, engineering analyses and numerical models should be validated using experimental data when possible to quantify the accuracy of their predictions under conditions relevant to their planned use. In this work, a set of lattice design parameters are evaluated using numerical modeling and experimental methods under quasi-static tensile, compressive, and shear modalities. Regular body centered cubic (BCC) and stochastic Voronoi Tessellation Method (VTM) lattices are constructed with three different cell lengths (2.5 mm, 4.0 mm, 5.0 mm) and various strut diameter thicknesses (ranging from 0.536 mm-1.3506 mm) while maintaining the lattice's relative density (0.2 and 0.3). Some strut diameters were selected to challenge the AM process limits. Specimens were fabricated in nylon 12 on a laser powder bed fusion system. Optical microscopy showed up to a 28.6% difference between as-designed and fabricated strut diameters. Simulated reaction loads revealed up to a 4.6% difference in BCC lattices within a constant relative density at a 1.4 mm displacement boundary condition while the VTM samples had up to a 19.5% difference. Errors between the experimental and simulated lattice reaction loads were as high as 97.0%. This error magnitude appears to strongly correlate with lattice strut diameter. These results showcase that a computational estimation, even one with reasonable assumptions, may erroneously characterize the performance of these lattice structures, and that these assumptions should be challenged by experimentally evaluating and validating critical quantities of interest.


Assuntos
Microscopia , Nylons
3.
Sensors (Basel) ; 11(7): 6517-32, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163970

RESUMO

Gas chromatography (GC) is used for organic and inorganic gas detection with a range of applications including screening for chemical warfare agents (CWA), breath analysis for diagnostics or law enforcement purposes, and air pollutants/indoor air quality monitoring of homes and commercial buildings. A field-portable, light weight, low power, rapid response, micro-gas chromatography (µGC) system is essential for such applications. We describe the design, fabrication and packaging of µGC on monolithically-integrated Si dies, comprised of a preconcentrator (PC), µGC column, detector and coatings for each of these components. An important feature of our system is that the same mechanical micro resonator design is used for the PC and detector. We demonstrate system performance by detecting four different CWA simulants within 2 min. We present theoretical analyses for cost/power comparisons of monolithic versus hybrid µGC systems. We discuss thermal isolation in monolithic systems to improve overall performance. Our monolithically-integrated µGC, relative to its hybrid cousin, will afford equal or slightly lower cost, a footprint that is 1/2 to 1/3 the size and an improved resolution of 4 to 25%.


Assuntos
Substâncias para a Guerra Química/análise , Cromatografia Gasosa/instrumentação , Poluentes Atmosféricos/análise , Testes Respiratórios/instrumentação , Cromatografia Gasosa/economia , Desenho de Equipamento , Gases/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA