Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
3.
Artigo em Inglês | MEDLINE | ID: mdl-38048026

RESUMO

BACKGROUND: The war in Ukraine has led to significant migration to neighboring countries, raising public health concerns. Notable tuberculosis (TB) incidence rates in Ukraine emphasize the immediate requirement to prioritize approaches that interrupt the spread and prevent new infections. METHODS: We conducted a prospective genomic surveillance study to assess migration's impact on TB epidemiology in the Czech Republic and Slovakia. Mycobacterium tuberculosis isolates from Ukrainian war refugees and migrants, collected from September 2021 to December 2022 were analyzed alongside 1574 isolates obtained from Ukraine, the Czech Republic, and Slovakia. RESULTS: Our study revealed alarming results, with historically the highest number of Ukrainian tuberculosis patients detected in the host countries. The increasing number of cases of multidrug-resistant TB, significantly linked with Beijing lineage 2.2.1 (p < 0.0001), also presents substantial obstacles to control endeavors. The genomic analysis identified the three highly related genomic clusters, indicating the recent TB transmission among migrant populations. The largest clusters comprised war refugees diagnosed in the Czech Republic, TB patients from various regions of Ukraine, and incarcerated individuals diagnosed with pulmonary TB specialized facility in the Kharkiv region, Ukraine, pointing to a national transmission sequence that has persisted for over 14 years. CONCLUSIONS: The data showed that most infections were likely the result of reactivation of latent disease or exposure to TB before migration rather than recent transmission occurring within the host country. However, close monitoring, appropriate treatment, careful surveillance, and social support are crucial in mitigating future risks, though there is currently no evidence of local transmission in EU countries.

4.
Front Microbiol ; 14: 1225438, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37860132

RESUMO

Tuberculosis is a major global health issue, with approximately 10 million people falling ill and 1.4 million dying yearly. One of the most significant challenges to public health is the emergence of drug-resistant tuberculosis. For the last half-century, treating tuberculosis has adhered to a uniform management strategy in most patients. However, treatment ineffectiveness in some individuals with pulmonary tuberculosis presents a major challenge to the global tuberculosis control initiative. Unfavorable outcomes of tuberculosis treatment (including mortality, treatment failure, loss of follow-up, and unevaluated cases) may result in increased transmission of tuberculosis and the emergence of drug-resistant strains. Treatment failure may occur due to drug-resistant strains, non-adherence to medication, inadequate absorption of drugs, or low-quality healthcare. Identifying the underlying cause and adjusting the treatment accordingly to address treatment failure is important. This is where approaches such as artificial intelligence, genetic screening, and whole genome sequencing can play a critical role. In this review, we suggest a set of particular clinical applications of these approaches, which might have the potential to influence decisions regarding the clinical management of tuberculosis patients.

5.
JAC Antimicrob Resist ; 5(5): dlad108, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37799267

RESUMO

Objectives: Rapidly diagnosing drug-resistant TB is crucial for improving treatment and transmission control. WGS is becoming increasingly accessible and has added value to the diagnosis and treatment of TB. The aim of the study was to perform WGS to determine the rate of false-positive results of phenotypic drug susceptibility testing (pDST) and characterize the molecular mechanisms of resistance and transmission of mono- and polyresistant Mycobacterium (M.) tuberculosis. Methods: WGS was performed on 53 monoresistant and 25 polyresistant M. tuberculosis isolates characterized by pDST. Sequencing data were bioinformatically processed to infer mutations encoding resistance and determine the origin of resistance and phylogenetic relationship between isolates studied. Results: The data showed the variable sensitivity and specificity of WGS in comparison with pDST as the gold standard: isoniazid 92.7% and 92.3%; streptomycin 41.9% and 100.0%; pyrazinamide 15% and 94.8%; and ethambutol 75.0% and 98.6%, respectively. We found novel mutations encoding resistance to streptomycin (in gidB) and pyrazinamide (in kefB). Most isolates belonged to lineage 4 (80.1%) and the overall clustering rate was 11.5%. We observed lineage-specific gene variations encoding resistance to streptomycin and pyrazinamide. Conclusions: This study highlights the clinical potential of WGS in ruling out false-positive drug resistance following phenotypic or genetic drug testing, and recommend this technology together with the WHO catalogue in designing an optimal individualized treatment regimen and preventing the development of MDR TB. Our results suggest that resistance is primarily developed through spontaneous mutations or selective pressure.

6.
Respir Physiol Neurobiol ; 314: 104090, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37315773

RESUMO

Nontuberculous mycobacteria (NTM) are opportunistic human pathogens found worldwide, primarily in the environment. They predominantly affect the lungs, especially in individuals with compromised immune systems. Recent studies suggest an increasing incidence of NTM disease; however, their actual clinical impact in Slovakia remains uncertain. In this study, we conducted a retrospective analysis using a representative collection of NTM cases in the country. We searched the national database for patients with positive NTM cultures between January 2016 and December 2021. A total of 1355 NTM-positive cultures were identified in Slovakia, with no significant increase observed during the study period. Among these, 358 cases (26.4%) were confirmed as NTM disease. The incidence of the disease was notably higher in individuals over 55 years old (p < 0.0001). Moreover, women diagnosed with NTM disease exhibited a significantly higher average age than men (p = 0.0005). The majority of NTM disease cases were attributed to Mycobacterium (M.) intracellulare (39.9%) and M. avium (38.5%). Geographically, the highest incidence of NTM disease was observed in the Bratislava region (10.69 per 100,000 population).


Assuntos
Infecção por Mycobacterium avium-intracellulare , Micobactérias não Tuberculosas , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Infecção por Mycobacterium avium-intracellulare/epidemiologia , Infecção por Mycobacterium avium-intracellulare/microbiologia , Complexo Mycobacterium avium , Estudos Retrospectivos , Eslováquia/epidemiologia
7.
Rapid Commun Mass Spectrom ; 37(2): e9425, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36329637

RESUMO

RATIONALE: Tuberculosis (TB) remains a challenging global infectious disease, mainly affecting the lungs. First-line anti-TB drugs play a crucial role in slowing down the rapid spread of TB. In addition, the patient might benefit from therapeutic drug monitoring since it has become an accepted clinical tool for optimizing TB treatment. METHODS: A simple and sensitive liquid chromatography/tandem mass spectrometry method was developed to monitor the plasma level of isoniazid, ethambutol and pyrazinamide in plasma samples. A one-step extraction procedure using an Ostro™ plate was applied, and extracts were analyzed by gradient elution followed by detection on a mass spectrometer by multiple reaction monitoring mode. RESULTS: The analytes were separated within 4.2 min and over the concentration range of 0.2-10 µg/ml for isoniazid and ethambutol and 1-65 µg/ml for pyrazinamide. The method was successfully validated according to the European Medicine Agency guideline for the selectivity, linearity and lower limit of detection, precision and accuracy, matrix effect, extraction recovery, carryover, dilution integrity and stability, and applied for quantification of analytes in clinical samples from TB patients. CONCLUSIONS: The presented method allows sensitive and reproducible determination of selected anti-TB drugs with advantages such as low sample volume requirement, short run time of analysis, one-step sample preparation procedure with capabilities for phospholipids removal, and a low quantification limit as well as a high degree of selectivity.


Assuntos
Etambutol , Tuberculose , Humanos , Etambutol/análise , Etambutol/uso terapêutico , Pirazinamida/análise , Pirazinamida/uso terapêutico , Isoniazida/uso terapêutico , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Antituberculosos , Tuberculose/tratamento farmacológico , Cromatografia Líquida de Alta Pressão/métodos
8.
Sci Rep ; 12(1): 7149, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505072

RESUMO

The emergence and spread of resistant tuberculosis (TB) pose a threat to public health, so it is necessary to diagnose the drug-resistant forms in a clinically short time frame and closely monitor their transmission. In this study, we carried out a first whole genome sequencing (WGS)-based analysis of multidrug resistant (MDR) M. tuberculosis strains to explore the phylogenetic lineages diversity, drug resistance mechanisms, and ongoing transmission chains within the country. In total, 65 isolates phenotypically resistant to at least rifampicin and isoniazid collected in the Czech Republic in 2005-2020 were enrolled for further analysis. The agreement of the results obtained by WGS with phenotypic drug susceptibility testing (pDST) in the determination of resistance to isoniazid, rifampicin, pyrazinamide, streptomycin, second-line injectables and fluoroquinolones was more than 80%. Phylogenetic analysis of WGS data revealed that the majority of MDR M. tuberculosis isolates were the Beijing lineage 2.2.1 (n = 46/65; 70.8%), while the remaining strains belonged to Euro-American lineage. Cluster analysis with a predefined cut-off distance of less than 12 single nucleotide polymorphisms between isolates showed 19 isolates in 6 clusters (clustering rate 29.2%), located mainly in the region of the capital city of Prague. This study highlights the utility of WGS as a high-resolution approach in the diagnosis, characterization of resistance patterns, and molecular-epidemiological analysis of resistant TB in the country.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , República Tcheca/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Genótipo , Humanos , Isoniazida , Testes de Sensibilidade Microbiana , Mutação , Filogenia , Rifampina , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Sequenciamento Completo do Genoma/métodos
9.
J Clin Tuberc Other Mycobact Dis ; 26: 100292, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35005254

RESUMO

OBJECTIVE: The resistance of Mycobacterium (M.) tuberculosis to antituberculosis drugs poses a major threat to global public health. Whole genome sequencing (WGS) is an increasingly preferred method in the diagnostics and monitoring of the transmission dynamics of resistant forms of tuberculosis (TB). The aim of the study was to, for the first time, use the sequencing-based analysis to study the transmission and resistance patterns of a systematic and recent collection of extensively drug resistant (XDR) and multidrug resistant tuberculosis (MDR-TB) isolates and to expand our knowledge about drug resistant (DR) TB epidemiological dynamics in Slovakia. DESIGN: A total of 495 patients with pulmonary TB, who were referred to National Reference Laboratory for Mycobacteriology (Vysné Hágy, Slovakia) in the years 2018-2019, were studied. Out of the total of 495 patients, 4 XDR-TB (0.8%) and 8 (1.6%) MDR-TB isolates were identified by conventional drug susceptibility testing on Löwenstein-Jensen solid medium and subjected to whole genome sequencing. Sequencing data were evaluated for molecular-epidemiological analysis and identification of resistance patterns. RESULTS: Phylogenetic and cluster analysis showed extensive recent transmission events and the predominance of Euro-American lineage 4.7 in Slovakia. However, phylogenetic analysis revealed the circulation of several lineages that originally occurred in Eastern European countries. Resistance patterns for first- and second-line antituberculosis drugs characterized by whole genome sequencing were in high concordance with the results of phenotypic drug susceptibility testing. CONCLUSION: Forty percent of at least MDR-TB isolates were not genetically linked, indicating that appropriate measures should be taken to monitor and prevent the spread of drug-resistant tuberculosis within the country as well as in other regions.

10.
Microorganisms ; 9(11)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34835363

RESUMO

Infections caused by non-tuberculous mycobacteria (NTM) have been a public health problem in recent decades and contribute significantly to the clinical and economic burden globally. The diagnosis of infections is difficult and time-consuming and, in addition, the conventional diagnostics tests do not have sufficient discrimination power in species identification due to cross-reactions and not fully specific probes. However, technological advances have been made and the whole genome sequencing (WGS) method has been shown to be an essential part of routine diagnostics in clinical mycobacteriology laboratories. The use of this technology has contributed to the characterization of new species of mycobacteria, as well as the identification of gene mutations encoding resistance and virulence factors. Sequencing data also allowed to track global outbreaks of nosocomial NTM infections caused by M. abscessus complex and M. chimaera. To highlight the utility of WGS, we summarize recent scientific studies on WGS as a tool suitable for the management of NTM-induced infections in clinical practice.

11.
Tuberculosis (Edinb) ; 123: 101946, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32741530

RESUMO

The numbers of patients with tuberculosis (TB) caused by resistant strains are still alarming. Therefore, it is necessary to determine resistance more quickly and precisely, than it is with the currently used phenotypic and genotypic methods. In recent years, technological advances have been made and the whole-genome sequencing (WGS) method has been introduced as a part of routine diagnostics in clinical laboratories. Comparing a wide range of mycobacterial genomic variations with a reference genome leads to a consistent evaluation of molecular-epidemiology and resistance of Mycobacterium tuberculosis (M. tuberculosis) to a wide range of anti-TB drugs. The quality of the obtained sequencing data is closely related to the type of sample and the method used for DNA extraction and sequencing library preparation. Moreover, the correct interpretation of results is also influenced by a bioinformatic data processing. A large number of bioinformatics pipelines are currently available, the sensitivity of which varies due to the different sizes of databases containing relevant mutations. This review focuses on the individual steps included in the sequencing workflow and factors that may affect the interpretation of final results.


Assuntos
DNA Bacteriano/genética , Sequenciamento de Nucleotídeos em Larga Escala , Mycobacterium tuberculosis/genética , Manejo de Espécimes , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Sequenciamento Completo do Genoma , Antituberculosos/uso terapêutico , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno , Humanos , Epidemiologia Molecular , Mycobacterium tuberculosis/patogenicidade , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Falha de Tratamento , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA