Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nat Commun ; 15(1): 3741, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702301

RESUMO

Targeted therapy is effective in many tumor types including lung cancer, the leading cause of cancer mortality. Paradigm defining examples are targeted therapies directed against non-small cell lung cancer (NSCLC) subtypes with oncogenic alterations in EGFR, ALK and KRAS. The success of targeted therapy is limited by drug-tolerant persister cells (DTPs) which withstand and adapt to treatment and comprise the residual disease state that is typical during treatment with clinical targeted therapies. Here, we integrate studies in patient-derived and immunocompetent lung cancer models and clinical specimens obtained from patients on targeted therapy to uncover a focal adhesion kinase (FAK)-YAP signaling axis that promotes residual disease during oncogenic EGFR-, ALK-, and KRAS-targeted therapies. FAK-YAP signaling inhibition combined with the primary targeted therapy suppressed residual drug-tolerant cells and enhanced tumor responses. This study unveils a FAK-YAP signaling module that promotes residual disease in lung cancer and mechanism-based therapeutic strategies to improve tumor response.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Transdução de Sinais , Fatores de Transcrição , Proteínas de Sinalização YAP , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Sinalização YAP/metabolismo , Linhagem Celular Tumoral , Animais , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasia Residual , Camundongos , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Quinase do Linfoma Anaplásico/metabolismo , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Cancer Ther ; 23(2): 127-138, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37816503

RESUMO

The cluster of differentiation 38 (CD38) is a well-validated target for treating multiple myeloma. Although anti-CD38 mAbs have demonstrated outstanding initial responses in patients with multiple myeloma, nearly all patients eventually develop resistance and relapse. In addition, currently approved CD38 targeting therapies have failed to show monotherapy efficacy in lymphomas, where CD38 expression is present but at lower levels. To effectively target CD38 on tumor cells, we generated an antibody-dependent cellular cytotoxicity (ADCC) enhanced bispecific CD38 x intercellular cell adhesion molecule 1 (ICAM-1) antibody, VP301. This bispecific antibody targets unique epitopes on CD38 and ICAM-1 on tumor cells with reduced red blood cell binding compared with the benchmark CD38 antibody daratumumab. VP301 demonstrated potent ADCC and antibody-dependent cellular phagocytosis activities on a selected set of myeloma and lymphoma cell lines even those with low CD38 expression. In an ex vivo drug sensitivity assay, we observed responses to VP301 in multiple myeloma primary samples from relapsed/refractory patients. Moreover, VP301 demonstrated potent tumor inhibition activities in in vivo myeloma and lymphoma models. Interestingly, combination of VP301 with the immunomodulatory drug, lenalidomide, led to synergistic antitumor growth activity in an in vivo efficacy study. In conclusion, the CD38 x ICAM-1 bispecific antibody VP301 demonstrated promising efficacy and specificity toward CD38+ and ICAM-1+ tumor cells and represents a novel approach for treating multiple myeloma and lymphoma.


Assuntos
Anticorpos Biespecíficos , Linfoma , Mieloma Múltiplo , Humanos , ADP-Ribosil Ciclase 1/metabolismo , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Linhagem Celular Tumoral , Molécula 1 de Adesão Intercelular/metabolismo , Mieloma Múltiplo/patologia
3.
Cancer Res ; 83(24): 4112-4129, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37934103

RESUMO

Primary/intrinsic and treatment-induced acquired resistance limit the initial response rate to and long-term efficacy of direct inhibitors of the KRASG12C mutant in cancer. To identify potential mechanisms of resistance, we applied a CRISPR/Cas9 loss-of-function screen and observed loss of multiple components of the Hippo tumor suppressor pathway, which acts to suppress YAP1/TAZ-regulated gene transcription. YAP1/TAZ activation impaired the antiproliferative and proapoptotic effects of KRASG12C inhibitor (G12Ci) treatment in KRASG12C-mutant cancer cell lines. Conversely, genetic suppression of YAP1/WWTR1 (TAZ) enhanced G12Ci sensitivity. YAP1/TAZ activity overcame KRAS dependency through two distinct TEAD transcription factor-dependent mechanisms, which phenocopy KRAS effector signaling. First, TEAD stimulated ERK-independent transcription of genes normally regulated by ERK (BIRC5, CDC20, ECT2, FOSL1, and MYC) to promote progression through the cell cycle. Second, TEAD caused activation of PI3K-AKT-mTOR signaling to overcome apoptosis. G12Ci treatment-induced acquired resistance was also caused by YAP1/TAZ-TEAD activation. Accordingly, concurrent treatment with pharmacologic inhibitors of TEAD synergistically enhanced KRASG12C inhibitor antitumor activity in vitro and prolonged tumor suppression in vivo. In summary, these observations reveal YAP1/TAZ-TEAD signaling as a crucial driver of primary and acquired resistance to KRAS inhibition and support the use of TEAD inhibitors to enhance the antitumor efficacy of KRAS-targeted therapies. SIGNIFICANCE: YAP1/TAZ-TEAD activation compensates for loss of KRAS effector signaling, establishing a mechanistic basis for concurrent inhibition of TEAD to enhance the efficacy of KRASG12C-selective inhibitor treatment of KRASG12C-mutant cancers. See related commentary by Johnson and Haigis, p. 4005.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias , Fatores de Transcrição de Domínio TEA , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transativadores/metabolismo , Proteínas de Sinalização YAP , Fatores de Transcrição de Domínio TEA/antagonistas & inibidores
4.
Brain ; 146(4): 1697-1713, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36148553

RESUMO

Schwannoma tumours typically arise on the eighth cranial nerve and are mostly caused by loss of the tumour suppressor Merlin (NF2). There are no approved chemotherapies for these tumours and the surgical removal of the tumour carries a high risk of damage to the eighth or other close cranial nerve tissue. New treatments for schwannoma and other NF2-null tumours such as meningioma are urgently required. Using a combination of human primary tumour cells and mouse models of schwannoma, we have examined the role of the Hippo signalling pathway in driving tumour cell growth. Using both genetic ablation of the Hippo effectors YAP and TAZ as well as novel TEAD palmitoylation inhibitors, we show that Hippo signalling may be successfully targeted in vitro and in vivo to both block and, remarkably, regress schwannoma tumour growth. In particular, successful use of TEAD palmitoylation inhibitors in a preclinical mouse model of schwannoma points to their potential future clinical use. We also identify the cancer stem cell marker aldehyde dehydrogenase 1A1 (ALDH1A1) as a Hippo signalling target, driven by the TAZ protein in human and mouse NF2-null schwannoma cells, as well as in NF2-null meningioma cells, and examine the potential future role of this new target in halting schwannoma and meningioma tumour growth.


Assuntos
Neoplasias Meníngeas , Meningioma , Neurilemoma , Animais , Humanos , Camundongos , Proliferação de Células , Neurilemoma/genética , Neurilemoma/patologia , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Fatores de Transcrição de Domínio TEA/metabolismo
5.
Mol Cancer Ther ; 20(6): 986-998, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33850002

RESUMO

Mutations in the neurofibromatosis type 2 (NF2) gene that limit or abrogate expression of functional Merlin are common in malignant mesothelioma. Merlin activates the Hippo pathway to suppress nuclear translocation of YAP and TAZ, the major effectors of the pathway that associate with the TEAD transcription factors in the nucleus and promote expression of genes involved in cell proliferation and survival. In this article, we describe the discovery of compounds that selectively inhibit YAP/TAZ-TEAD promoted gene transcription, block TEAD auto-palmitoylation, and disrupt interaction between YAP/TAZ and TEAD. Optimization led to potent analogs with excellent oral bioavailability and pharmacokinetics that selectively inhibit NF2-deficient mesothelioma cell proliferation in vitro and growth of subcutaneous tumor xenografts in vivo These highly potent and selective TEAD inhibitors provide a way to target the Hippo-YAP pathway, which thus far has been undruggable and is dysregulated frequently in malignant mesothelioma and in other YAP-driven cancers and diseases.


Assuntos
Mesotelioma Maligno/tratamento farmacológico , Fatores de Transcrição de Domínio TEA/antagonistas & inibidores , Animais , Proliferação de Células , Humanos , Lipoilação , Mesotelioma Maligno/genética , Camundongos , Transdução de Sinais
6.
Oncotarget ; 8(17): 28575-28587, 2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28212573

RESUMO

Small cell lung cancer (SCLC) is one of the most aggressive forms of cancer, with a 5-year survival <7%. A major barrier to progress is the absence of predictive biomarkers for chemotherapy and novel targeted agents such as PARP inhibitors. Using a high-throughput, integrated proteomic, transcriptomic, and genomic analysis of SCLC patient-derived xenografts (PDXs) and profiled cell lines, we identified biomarkers of drug sensitivity and determined their prevalence in patient tumors. In contrast to breast and ovarian cancer, PARP inhibitor response was not associated with mutations in homologous recombination (HR) genes (e.g., BRCA1/2) or HRD scores. Instead, we found several proteomic markers that predicted PDX response, including high levels of SLFN11 and E-cadherin and low ATM. SLFN11 and E-cadherin were also significantly associated with in vitro sensitivity to cisplatin and topoisomerase1/2 inhibitors (all commonly used in SCLC). Treatment with cisplatin or PARP inhibitors downregulated SLFN11 and E-cadherin, possibly explaining the rapid development of therapeutic resistance in SCLC. Supporting their functional role, silencing SLFN11 reduced in vitro sensitivity and drug-induced DNA damage; whereas ATM knockdown or pharmacologic inhibition enhanced sensitivity. Notably, SCLC with mesenchymal phenotypes (i.e., loss of E-cadherin and high epithelial-to-mesenchymal transition (EMT) signature scores) displayed striking alterations in expression of miR200 family and key SCLC genes (e.g., NEUROD1, ASCL1, ALDH1A1, MYCL1). Thus, SLFN11, EMT, and ATM mediate therapeutic response in SCLC and warrant further clinical investigation as predictive biomarkers.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Nucleares/genética , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Biomarcadores , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos/genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Proteínas Nucleares/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/metabolismo
7.
J Med Chem ; 59(1): 335-57, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26652717

RESUMO

We discovered and developed a novel series of tetrahydropyridophthlazinones as poly(ADP-ribose) polymerase (PARP) 1 and 2 inhibitors. Lead optimization led to the identification of (8S,9R)-47 (talazoparib; BMN 673; (8S,9R)-5-fluoro-8-(4-fluorophenyl)-9-(1-methyl-1H-1,2,4-triazol-5-yl)-2,7,8,9-tetrahydro-3H-pyrido[4,3,2-de]phthalazin-3-one). The novel stereospecific dual chiral-center-embedded structure of this compound has enabled extensive and unique binding interactions with PARP1/2 proteins. (8S,9R)-47 demonstrates excellent potency, inhibiting PARP1 and PARP2 enzyme activity with Ki = 1.2 and 0.87 nM, respectively. It inhibits PARP-mediated PARylation in a whole-cell assay with an EC50 of 2.51 nM and prevents proliferation of cancer cells carrying mutant BRCA1/2, with EC50 = 0.3 nM (MX-1) and 5 nM (Capan-1), respectively. (8S,9R)-47 is orally available, displaying favorable pharmacokinetic (PK) properties and remarkable antitumor efficacy in the BRCA1 mutant MX-1 breast cancer xenograft model following oral administration as a single-agent or in combination with chemotherapy agents such as temozolomide and cisplatin. (8S,9R)-47 has completed phase 1 clinical trial and is currently being studied in phase 2 and 3 clinical trials for the treatment of locally advanced and/or metastatic breast cancer with germline BRCA1/2 deleterious mutations.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Ftalazinas/síntese química , Ftalazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/efeitos dos fármacos , Animais , Antineoplásicos/farmacocinética , Proteína BRCA1/antagonistas & inibidores , Proteína BRCA1/genética , Proteína BRCA2/antagonistas & inibidores , Proteína BRCA2/genética , Proliferação de Células/efeitos dos fármacos , Ensaios Clínicos Fase I como Assunto , Descoberta de Drogas , Feminino , Mutação em Linhagem Germinativa , Humanos , Cinética , Camundongos , Camundongos Nus , Modelos Moleculares , Ftalazinas/farmacocinética , Poli(ADP-Ribose) Polimerase-1 , Ligação Proteica , Ratos , Estereoisomerismo , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Clin Cancer Res ; 19(18): 5003-15, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23881923

RESUMO

PURPOSE: PARP1/2 inhibitors are a class of anticancer agents that target tumor-specific defects in DNA repair. Here, we describe BMN 673, a novel, highly potent PARP1/2 inhibitor with favorable metabolic stability, oral bioavailability, and pharmacokinetic properties. EXPERIMENTAL DESIGN: Potency and selectivity of BMN 673 was determined by biochemical assays. Anticancer activity either as a single-agent or in combination with other antitumor agents was evaluated both in vitro and in xenograft cancer models. RESULTS: BMN 673 is a potent PARP1/2 inhibitor (PARP1 IC50 = 0.57 nmol/L), but it does not inhibit other enzymes that we have tested. BMN 673 exhibits selective antitumor cytotoxicity and elicits DNA repair biomarkers at much lower concentrations than earlier generation PARP1/2 inhibitors (such as olaparib, rucaparib, and veliparib). In vitro, BMN 673 selectively targeted tumor cells with BRCA1, BRCA2, or PTEN gene defects with 20- to more than 200-fold greater potency than existing PARP1/2 inhibitors. BMN 673 is readily orally bioavailable, with more than 40% absolute oral bioavailability in rats when dosed in carboxylmethyl cellulose. Oral administration of BMN 673 elicited remarkable antitumor activity in vivo; xenografted tumors that carry defects in DNA repair due to BRCA mutations or PTEN deficiency were profoundly sensitive to oral BMN 673 treatment at well-tolerated doses in mice. Synergistic or additive antitumor effects were also found when BMN 673 was combined with temozolomide, SN38, or platinum drugs. CONCLUSION: BMN 673 is currently in early-phase clinical development and represents a promising PARP1/2 inhibitor with potentially advantageous features in its drug class.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Distúrbios no Reparo do DNA/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ftalazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases , Animais , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Citometria de Fluxo , Humanos , Camundongos , Camundongos Nus , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , RNA Interferente Pequeno/genética , Ratos , Células Tumorais Cultivadas , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cancer Gene Ther ; 12(8): 673-81, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15803147

RESUMO

Despite recent improvements in the treatment of metastatic colorectal cancer, few patients are cured and the response rates to second-line treatments are poor. Onyx-015, an oncolytic virus, was administered to patients with metastatic colorectal cancer by hepatic artery infusion. No dose-limiting toxicities were observed in the phase I/II studies. Onyx-015 can kill tumor cells by mechanisms that are distinct from chemotherapeutic agents and may therefore have activity among patients who have failed first-line chemotherapy. The 24 patients included in this analysis had failed first-line therapy with 5-FU/leucovorin, 79% of the patients failed two or more regimens and 58% had failed treatment with Irinotecan. Despite the extensive prior therapy, the median survival of these patients was 10.7 months, 46% were alive at 1 year and two patients (8%) had partial responses. In all, 11 patients (46%) had stable disease at the completion of the four planned viral treatments (3 months). The median survival of this group of patients was 19 months, suggesting that stable disease may be an important predictor of benefit with oncolytic viruses. Eight of the 11 patients with stable disease at 3 months demonstrated a unique radiographic pattern of transient enlargement of tumor masses (10-48%) after the initial infusions of Onyx-015, followed by radiographic evidence of extensive tumor necrosis and regression. The initial enlargement and subsequent tumor necrosis resulted in a prolonged time to achieve objective tumor regression. In addition, the transient enlargement of the tumor masses may have resulted in premature removal of responding patients. Treatment of eight patients was stopped prior to completion of the planned four treatments due to presumed progression as defined by standard radiographic criteria (>25% increase in tumor size). Functional imaging, such as positron emission tomography (PET) scans, may help distinguish clinical responses from progressive disease following treatment with oncolytic viruses. Onyx-015 may benefit patients with refractory colorectal cancer and additional studies that include PET scans to assess clinical response are warranted.


Assuntos
Adenoviridae , Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Fluoruracila/administração & dosagem , Humanos , Leucovorina/administração & dosagem , Mutação , Metástase Neoplásica , Falha de Tratamento , Proteína Supressora de Tumor p53/genética , Vacinas Virais
10.
Cancer Gene Ther ; 12(1): 19-25, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15514685

RESUMO

In this report, we describe a vector system that specifically delivers transgene products to tumors following intravenous (i.v.) administration. The Escherichia coli cytosine deaminase (CD) gene was placed in the E3B region of the tumor-selective, replication-competent adenovirus ONYX-411, under the control of endogenous viral late gene regulatory elements. Thus, CD expression was directly coupled to the tumor-selective replication of the viral vector. In vitro, CD was expressed efficiently in various human cancer cell lines tested but not in cultured normal human cells, including human hepatocytes. Following i.v. administration into nude mice carrying human tumor xenografts, robust CD activity was detected only in tumors but not in liver or other normal tissues. Levels of CD activity in the tumors increased progressively following i.v. virus administration, correlating closely with virus replication in vivo. Subsequent administration of 5-fluorocytosine (5-FC) demonstrated a trend to improve the antitumor efficacy of these viruses in a mouse xenograft model, presumably due to the intratumoral conversion of 5-FC to the chemotherapeutic drug 5-fluorouracil. We show that the combination of a highly selective oncolytic virus, ONYX-411, with the strategic use of the viral E3B region for transgene insertion provides a powerful platform that allows for tumor-specific, persistent and robust transgene expression after i.v. administration. This technology provides an opportunity to enhance greatly both safety and efficacy of cancer gene therapy.


Assuntos
Adenoviridae/genética , Citosina Desaminase/biossíntese , Citosina Desaminase/genética , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos , Animais , Antimetabólitos/farmacologia , Escherichia coli/genética , Flucitosina/farmacologia , Regulação da Expressão Gênica , Hepatócitos , Humanos , Infusões Intravenosas , Camundongos , Camundongos Nus , Transgenes , Transplante Heterólogo , Células Tumorais Cultivadas , Replicação Viral
11.
Cancer Res ; 64(19): 7099-109, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15466206

RESUMO

The RAS/RAF signaling pathway is an important mediator of tumor cell proliferation and angiogenesis. The novel bi-aryl urea BAY 43-9006 is a potent inhibitor of Raf-1, a member of the RAF/MEK/ERK signaling pathway. Additional characterization showed that BAY 43-9006 suppresses both wild-type and V599E mutant BRAF activity in vitro. In addition, BAY 43-9006 demonstrated significant activity against several receptor tyrosine kinases involved in neovascularization and tumor progression, including vascular endothelial growth factor receptor (VEGFR)-2, VEGFR-3, platelet-derived growth factor receptor beta, Flt-3, and c-KIT. In cellular mechanistic assays, BAY 43-9006 demonstrated inhibition of the mitogen-activated protein kinase pathway in colon, pancreatic, and breast tumor cell lines expressing mutant KRAS or wild-type or mutant BRAF, whereas non-small-cell lung cancer cell lines expressing mutant KRAS were insensitive to inhibition of the mitogen-activated protein kinase pathway by BAY 43-9006. Potent inhibition of VEGFR-2, platelet-derived growth factor receptor beta, and VEGFR-3 cellular receptor autophosphorylation was also observed for BAY 43-9006. Once daily oral dosing of BAY 43-9006 demonstrated broad-spectrum antitumor activity in colon, breast, and non-small-cell lung cancer xenograft models. Immunohistochemistry demonstrated a close association between inhibition of tumor growth and inhibition of the extracellular signal-regulated kinases (ERKs) 1/2 phosphorylation in two of three xenograft models examined, consistent with inhibition of the RAF/MEK/ERK pathway in some but not all models. Additional analyses of microvessel density and microvessel area in the same tumor sections using antimurine CD31 antibodies demonstrated significant inhibition of neovascularization in all three of the xenograft models. These data demonstrate that BAY 43-9006 is a novel dual action RAF kinase and VEGFR inhibitor that targets tumor cell proliferation and tumor angiogenesis.


Assuntos
Benzenossulfonatos/farmacologia , MAP Quinase Quinase Quinase 1 , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Piridinas/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Administração Oral , Animais , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Humanos , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Camundongos Nus , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias/irrigação sanguínea , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/enzimologia , Niacinamida/análogos & derivados , Compostos de Fenilureia , Proteínas Proto-Oncogênicas c-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-raf/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Sorafenibe , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cancer Gene Ther ; 10(5): 341-52, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12719704

RESUMO

ONYX-015 is an adenovirus that selectively replicates in p53 dysfunctional or mutated malignant cells. We performed a pilot trial to determine the safety and feasibility of treatment with ONYX-015 delivered intravenously in patients with advanced malignancy. One cohort of five patients received ONYX-015 once a week for 6 weeks at a dose of 2 x 10(12) particles per infusion in combination with weekly infusions of irinotecan (CPT11, 125 mg per week) and 5-fluorouracil (5FU, 500 mg per week). A second cohort of five patients received the combination of ONYX-015 at a dose of 2 x 10(11) particles per week for 6 weeks in combination with interleukin 2 (IL 2, 1.1 x 10(6) units daily via subcutaneous injection for 5 days each week for 4 weeks). Toxicity attributable to ONYX-015 was limited to transient fever. All patients demonstrated elevations in neutralizing antibody titers within 4 weeks of the infusion of ONYX-015. Serum levels of IL-6, IL-10, tumor necrosis factor-alpha, and interferon-gamma increased within 6 hours of viral infusion, suggesting immune activation. This response was more pronounced in the cohort of patients who received 2 x 10(12) particles per infusion. Two patients demonstrated uptake of viral particles in malignant tissue by quantitative PCR. Electron microscopy confirmed selective cytoplasmic viral particles within malignant cells but not within adjacent normal tissue in a third patient. In conclusion ONYX-015 can be administered safely in combination with CPT11, 5FU or low-dose IL 2 and is able to access malignant tissue following intravenous infusion. Further investigation of ONYX-015, possibly with agents that may modulate replication activity, or duration of virus survival, is indicated.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Camptotecina/análogos & derivados , Interleucina-2/uso terapêutico , Neoplasias/terapia , Vacinas Virais/uso terapêutico , Adenoviridae/genética , Proteínas E1B de Adenovirus/genética , Proteínas E1B de Adenovirus/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Camptotecina/administração & dosagem , Terapia Combinada , Citocinas/sangue , Feminino , Fluoruracila/administração & dosagem , Terapia Genética , Humanos , Imunoterapia , Infusões Intravenosas , Irinotecano , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Replicação Viral
13.
Curr Opin Investig Drugs ; 4(12): 1436-41, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14763129

RESUMO

Recognition of the importance of the Raf pathway in the proliferation and survival of tumor cells recently increased with the discovery of activating BRAF mutations in human tumors. Therefore, in addition to a role in controlling tumors with Ras mutations and activated growth factor receptors, inhibitors of the Raf pathway may harbor therapeutic potential in tumors carrying a BRAF oncogene. A variety of agents have been discovered that interfere with the Raf pathway, including antisense oligonucleotides and small molecules. These inhibitors block the expression of Raf protein, block Ras/Raf interaction, block its kinase activity, or block the kinase activity of the Raf target protein mitogen-activated protein kinase kinase. Raf pathway inhibitors that are currently undergoing clinical evaluation show promising signs of anticancer efficacy with a very tolerable safety profile. Indeed, the Raf inhibitor BAY-43-9006 recently entered phase III clinical trials. Here, we review the current development status of potential Raf pathway therapeutics.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas c-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-raf/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Animais , Benzenossulfonatos/química , Benzenossulfonatos/farmacologia , Benzenossulfonatos/uso terapêutico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Neoplasias/enzimologia , Niacinamida/análogos & derivados , Compostos de Fenilureia , Piridinas/química , Piridinas/farmacologia , Piridinas/uso terapêutico , Sorafenibe
14.
Curr Opin Investig Drugs ; 3(12): 1768-72, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12528315

RESUMO

Adenoviruses can be engineered to replicate selectively in tumor cells but inefficiently in normal cells. ONYX-015 (CI-1042, dl1520; Onyx Pharmaceuticals Inc), which replicates selectively in cells deficient in the p53 pathway, was the first such adenovirus to reach clinical testing. Multiple trials of ONYX-015 in over 300 cancer patients, and trials with other selectively replicating adenoviruses, have established the safety of this approach. Evidence of anticancer activity in patients is encouraging. Recently, the first clinical trial of a selectively replicating adenovirus carrying an inserted transgene was reported. Adenoviruses with improved efficiency of replication, technologies for use of the viruses as vectors for anticancer gene therapy, and various other approaches, provide promising directions to develop selectively replicating adenoviruses into systemic therapy for metastatic cancer.


Assuntos
Adenoviridae/genética , Ensaios Clínicos como Assunto/estatística & dados numéricos , Neoplasias/tratamento farmacológico , Tecnologia Farmacêutica/métodos , Animais , Humanos , Neoplasias/genética , Neoplasias/virologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Vacinas Virais/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA