Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(13): 7123-7135, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36961978

RESUMO

The design of PROteolysis-TArgeting Chimeras (PROTACs) requires bringing an E3 ligase into proximity with a target protein to modulate the concentration of the latter through its ubiquitination and degradation. Here, we present a method for generating high-accuracy structural models of E3 ligase-PROTAC-target protein ternary complexes. The method is dependent on two computational innovations: adding a "silent" convolution term to an efficient protein-protein docking program to eliminate protein poses that do not have acceptable linker conformations and clustering models of multiple PROTACs that use the same E3 ligase and target the same protein. Results show that the largest consensus clusters always have high predictive accuracy and that the ensemble of models can be used to predict the dissociation rate and cooperativity of the ternary complex that relate to the degrading activity of the PROTAC. The method is demonstrated by applications to known PROTAC structures and a blind test involving PROTACs against BRAF mutant V600E. The results confirm that PROTACs function by stabilizing a favorable interaction between the E3 ligase and the target protein but do not necessarily exploit the most energetically favorable geometry for interaction between the proteins.


Assuntos
Proteínas , Ubiquitina-Proteína Ligases , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Proteínas/metabolismo , Ubiquitinação
2.
J Med Chem ; 65(19): 12725-12746, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36117290

RESUMO

Targeted protein degradation (TPD) strategies exploit bivalent small molecules to bridge substrate proteins to an E3 ubiquitin ligase to induce substrate degradation. Few E3s have been explored as degradation effectors due to a dearth of E3-binding small molecules. We show that genetically induced recruitment to the GID4 subunit of the CTLH E3 complex induces protein degradation. An NMR-based fragment screen followed by structure-guided analog elaboration identified two binders of GID4, 16 and 67, with Kd values of 110 and 17 µM in vitro. A parallel DNA-encoded library (DEL) screen identified five binders of GID4, the best of which, 88, had a Kd of 5.6 µM in vitro and an EC50 of 558 nM in cells with strong selectivity for GID4. X-ray co-structure determination revealed the basis for GID4-small molecule interactions. These results position GID4-CTLH as an E3 for TPD and provide candidate scaffolds for high-affinity moieties that bind GID4.


Assuntos
DNA , Ubiquitina-Proteína Ligases , DNA/metabolismo , Humanos , Proteólise , Ubiquitina-Proteína Ligases/metabolismo
3.
Sci Adv ; 7(44): eabi5797, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34705497

RESUMO

Pharmacological control of the ubiquitin-proteasome system (UPS) is of intense interest in drug discovery. Here, we report the development of chemical inhibitors of the ubiquitin-conjugating (E2) enzyme CDC34A (also known as UBE2R1), which donates activated ubiquitin to the cullin-RING ligase (CRL) family of ubiquitin ligase (E3) enzymes. A FRET-based interaction assay was used to screen for novel compounds that stabilize the noncovalent complex between CDC34A and ubiquitin, and thereby inhibit the CDC34A catalytic cycle. An isonipecotamide hit compound was elaborated into analogs with ~1000-fold increased potency in stabilizing the CDC34A-ubiquitin complex. These analogs specifically inhibited CDC34A-dependent ubiquitination in vitro and stabilized an E2~ubiquitin thioester reaction intermediate in cells. The x-ray crystal structure of a CDC34A-ubiquitin-inhibitor complex uncovered the basis for analog structure-activity relationships. The development of chemical stabilizers of the CDC34A-ubiquitin complex illustrates a general strategy for de novo discovery of molecular glue compounds that stabilize weak protein interactions.

4.
Nat Chem Biol ; 16(11): 1170-1178, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32778845

RESUMO

The RAF family kinases function in the RAS-ERK pathway to transmit signals from activated RAS to the downstream kinases MEK and ERK. This pathway regulates cell proliferation, differentiation and survival, enabling mutations in RAS and RAF to act as potent drivers of human cancers. Drugs targeting the prevalent oncogenic mutant BRAF(V600E) have shown great efficacy in the clinic, but long-term effectiveness is limited by resistance mechanisms that often exploit the dimerization-dependent process by which RAF kinases are activated. Here, we investigated a proteolysis-targeting chimera (PROTAC) approach to BRAF inhibition. The most effective PROTAC, termed P4B, displayed superior specificity and inhibitory properties relative to non-PROTAC controls in BRAF(V600E) cell lines. In addition, P4B displayed utility in cell lines harboring alternative BRAF mutations that impart resistance to conventional BRAF inhibitors. This work provides a proof of concept for a substitute to conventional chemical inhibition to therapeutically constrain oncogenic BRAF.


Assuntos
Antineoplásicos , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Talidomida , Ubiquitina , Animais , Feminino , Humanos , Camundongos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Modelos Moleculares , Estrutura Molecular , Terapia de Alvo Molecular , Mutação , Fosforilação/efeitos dos fármacos , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteólise , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Transdução de Sinais , Relação Estrutura-Atividade , Talidomida/análogos & derivados , Talidomida/química , Ubiquitina/química
5.
J Org Chem ; 80(24): 12258-64, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26550962

RESUMO

Addition reactions of perfluoroalkyl radicals to ordinary or polyfluorinated alkenes have been frequently used to synthesize perfluoroalkylated organic compounds. Here ethyl/methyl 2-bromo-2,2-difluoroacetate, diethyl (bromodifluoromethyl)phosphonate, [(bromodifluoromethyl)sulfonyl]benzene, and ethyl 2-bromo-2-fluoroacetate were involved in Na2S2O4-mediated radical additions to vinyl ethers in the presence of alcohols to give difluoro or monofluoroacetyl-substituted acetals or corresponding difluoromethylphosphonate- and (difluoromethylphenyl)sulfonyl-substituted alkyl acetals. This methodology has also been applied as a key step in the synthesis of hitherto unknown 3,3-difluoro-GABA, completing the series of isomeric difluoro GABAs. Comparison of the pKa values of 3-fluoro- and 3,3-difluoro-GABA with that of the fluorine free parent compound showed that introduction of each fluorine lead to acidification of both the amino and the carboxyl functions by approximately one unit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA