RESUMO
Genetic diversity is heterogeneously distributed among populations of the same species, due to the joint effects of multiple demographic processes, including range contractions and expansions, and mating systems shifts. Here, we ask how both processes shape genomic diversity in space and time in the classical Primula vulgaris model. This perennial herb originated in the Caucasus region and was hypothesized to have expanded westward following glacial retreat in the Quaternary. Moreover, this species is a long-standing model for mating system transitions, exemplified by shifts from heterostyly to homostyly. Leveraging a high-quality reference genome of the closely related Primula veris and whole-genome resequencing data from both heterostylous and homostylous individuals from populations encompassing a wide distribution of P. vulgaris, we reconstructed the demographic history of P. vulgaris. Results are compatible with the previously proposed hypothesis of range expansion from the Caucasus region approximately 79,000 years ago and suggest later shifts to homostyly following rather than preceding postglacial colonization of England. Furthermore, in accordance with population genetic theoretical predictions, both processes are associated with reduced genetic diversity, increased linkage disequilibrium, and reduced efficacy of purifying selection. A novel result concerns the contrasting effects of range expansion versus shift to homostyly on transposable elements, for the former, process is associated with changes in transposable element genomic content, while the latter is not. Jointly, our results elucidate how the interactions among range expansion, transitions to selfing, and Quaternary climatic oscillations shape plant evolution.
Assuntos
Variação Genética , Genoma de Planta , Primula , Primula/genética , Reprodução/genética , Desequilíbrio de LigaçãoRESUMO
Research on supergenes, non-recombining genomic regions housing tightly linked genes that control complex phenotypes, has recently gained prominence in genomics. Heterostyly, a floral heteromorphism promoting outcrossing in several angiosperm families, is controlled by the S-locus supergene. The S-locus has been studied primarily in closely related Primula species and, more recently, in other groups that independently evolved heterostyly. However, it remains unknown whether genetic architecture and composition of the S-locus are maintained among species that share a common origin of heterostyly and subsequently diverged across larger time scales. To address this research gap, we present a chromosome-scale genome assembly of Primula edelbergii, a species that shares the same origin of heterostyly with Primula veris (whose S-locus has been characterized) but diverged from it 18 million years ago. Comparative genomic analyses between these two species allowed us to show, for the first time, that the S-locus can 'jump' (i.e. translocate) between chromosomes maintaining its function in controlling heterostyly. Additionally, we found that four S-locus genes were conserved but reshuffled within the supergene, seemingly without affecting their expression, thus we could not detect changes explaining the lack of self-incompatibility in P. edelbergii. Furthermore, we confirmed that the S-locus is not undergoing genetic degeneration. Finally, we investigated P. edelbergii evolutionary history within Ericales in terms of whole genome duplications and transposable element accumulation. In summary, our work provides a valuable resource for comparative analyses aimed at investigating the genetics of heterostyly and the pivotal role of supergenes in shaping the evolution of complex phenotypes.
Assuntos
Primula , Primula/genética , Primula/classificação , Evolução Molecular , Genoma de Planta/genéticaRESUMO
Pollinator-driven evolution of floral traits is thought to be a major driver of angiosperm speciation and diversification. Ophrys orchids mimic female insects to lure male pollinators into pseudocopulation. This strategy, called sexual deception, is species-specific, thereby providing strong premating reproductive isolation. Identifying the genomic architecture underlying pollinator adaptation and speciation may shed light on the mechanisms of angiosperm diversification. Here, we report the 5.2 Gb chromosome-scale genome sequence of Ophrys sphegodes. We find evidence for transposable element expansion that preceded the radiation of the O. sphegodes group, and for gene duplication having contributed to the evolution of chemical mimicry. We report a highly differentiated genomic candidate region for pollinator-mediated evolution on chromosome 2. The Ophrys genome will prove useful for investigations into the repeated evolution of sexual deception, pollinator adaptation and the genomic architectures that facilitate evolutionary radiations.
Assuntos
Orchidaceae , Polinização , Aranhas , Animais , Orchidaceae/genética , Orchidaceae/fisiologia , Polinização/genética , Aranhas/genética , Aranhas/fisiologia , Genoma de Planta , Filogenia , Flores/genética , Flores/fisiologia , Adaptação Fisiológica/genética , Elementos de DNA Transponíveis/genética , Masculino , Feminino , Evolução Molecular , Duplicação Gênica , Isolamento Reprodutivo , Evolução BiológicaRESUMO
BACKGROUND: The advancement of sequencing technologies results in the rapid release of hundreds of new genome assemblies a year providing unprecedented resources for the study of genome evolution. Within this context, the significance of in-depth analyses of repetitive elements, transposable elements (TEs) in particular, is increasingly recognized in understanding genome evolution. Despite the plethora of available bioinformatic tools for identifying and annotating TEs, the phylogenetic distance of the target species from a curated and classified database of repetitive element sequences constrains any automated annotation effort. Moreover, manual curation of raw repeat libraries is deemed essential due to the frequent incompleteness of automatically generated consensus sequences. RESULTS: Here, we present an example of a crowd-sourcing effort aimed at curating and annotating TE libraries of two non-model species built around a collaborative, peer-reviewed teaching process. Manual curation and classification are time-consuming processes that offer limited short-term academic rewards and are typically confined to a few research groups where methods are taught through hands-on experience. Crowd-sourcing efforts could therefore offer a significant opportunity to bridge the gap between learning the methods of curation effectively and empowering the scientific community with high-quality, reusable repeat libraries. CONCLUSIONS: The collaborative manual curation of TEs from two tardigrade species, for which there were no TE libraries available, resulted in the successful characterization of hundreds of new and diverse TEs in a reasonable time frame. Our crowd-sourcing setting can be used as a teaching reference guide for similar projects: A hidden treasure awaits discovery within non-model organisms.
RESUMO
Introgression is an important source of genetic variation that can determine species adaptation to environmental conditions. Yet, definitive evidence of the genomic and adaptive implications of introgression in nature remains scarce. The widespread hybrid zones of Darwin's primroses (Primula elatior, Primula veris, and Primula vulgaris) provide a unique natural laboratory for studying introgression in flowering plants and the varying permeability of species boundaries. Through analysis of 650 genomes, we provide evidence of an introgressed genomic region likely to confer adaptive advantage in conditions of soil toxicity. We also document unequivocal evidence of chloroplast introgression, an important precursor to species-wide chloroplast capture. Finally, we provide the first evidence that the S-locus supergene, which controls heterostyly in primroses, does not introgress in this clade. Our results contribute novel insights into the adaptive role of introgression and demonstrate the importance of extensive genomic and geographical sampling for illuminating the complex nature of species boundaries.
Assuntos
Magnoliopsida , Primula , Primula/genética , Genoma , Genômica , Magnoliopsida/genética , Cromossomos , Hibridização GenéticaRESUMO
Biodiversity hotspots, such as the Caucasus mountains, provide unprecedented opportunities for understanding the evolutionary processes that shape species diversity and richness. Therefore, we investigated the evolution of Primula sect. Primula, a clade with a high degree of endemism in the Caucasus. We performed phylogenetic and network analyses of whole-genome resequencing data from the entire nuclear genome, the entire chloroplast genome, and the entire heterostyly supergene. The different characteristics of the genomic partitions and the resulting phylogenetic incongruences enabled us to disentangle evolutionary histories resulting from tokogenetic vs cladogenetic processes. We provide the first phylogeny inferred from the heterostyly supergene that includes all species of Primula sect. Primula. Our results identified recurrent admixture at deep nodes between lineages in the Caucasus as the cause of non-monophyly in Primula. Biogeographic analyses support the 'out-of-the-Caucasus' hypothesis, emphasizing the importance of this hotspot as a cradle for biodiversity. Our findings provide novel insights into causal processes of phylogenetic discordance, demonstrating that genome-wide analyses from partitions with contrasting genetic characteristics and broad geographic sampling are crucial for disentangling the diversification of species-rich clades in biodiversity hotspots.
Assuntos
Primula , Filogenia , Primula/genética , Estudo de Associação Genômica Ampla , Biodiversidade , Especiação GenéticaRESUMO
Distyly, a floral dimorphism associated with heteromorphic self-incompatibility and controlled by the S-locus supergene, evolved independently multiple times. Comparative analyses of the first transcriptome atlas for the main distyly model, Primula veris, with other distylous species produced the following findings. A set of 53 constitutively expressed genes in P. veris did not include any of the housekeeping genes commonly used to normalize gene expression in qPCR experiments. The S-locus gene CYPT acquired its role in controlling style elongation via a change in expression profile. Comparison of genes differentially expressed between floral morphs revealed that brassinosteroids and auxin are the main hormones controlling style elongation in P. veris and Fagopyrum esculentum, respectively. Furthermore, shared biochemical pathways might underlie the expression of distyly in the distantly related P. veris, F. esculentum and Turnera subulata, suggesting a degree of correspondence between evolutionary convergence at phenotypic and molecular levels. Finally, we provide the first evidence supporting the previously proposed hypothesis that distyly supergenes of distantly related species evolved via the recruitment of genes related to the phytochrome-interacting factor (PIF) signaling network. To conclude, this is the first study that discovered homologous genes involved in the control of distyly in distantly related taxa.
Assuntos
Fagopyrum , Primula , Caracteres Sexuais , Transcriptoma , Genes EssenciaisRESUMO
Long-read DNA sequencing technologies require high molecular weight (HMW) DNA of adequate purity and integrity, which can be difficult to isolate from plant material. Plant leaves usually contain high levels of carbohydrates and secondary metabolites that can impact DNA purity, affecting downstream applications. Several protocols and kits are available for HMW DNA extraction, but they usually require a high amount of input material and often lead to substantial DNA fragmentation, making sequencing suboptimal in terms of read length and data yield. We here describe a protocol for plant HMW DNA extraction from low input material (0.1 g) which is easy to follow and quick (2.5 h). This method successfully enabled us to extract HMW from four species from different families (Orchidaceae, Poaceae, Brassicaceae, Asteraceae). In the case of recalcitrant species, we show that an additional purification step is sufficient to deliver a clean DNA sample. We demonstrate the suitability of our protocol for long-read sequencing on the Oxford Nanopore Technologies PromethION® platform, with and without the use of a short fragment depletion kit.
RESUMO
Supergenes are nonrecombining genomic regions ensuring the coinheritance of multiple, coadapted genes. Despite the importance of supergenes in adaptation, little is known on how they originate. A classic example of supergene is the S locus controlling heterostyly, a floral heteromorphism occurring in 28 angiosperm families. In Primula, heterostyly is characterized by the cooccurrence of two complementary, self-incompatible floral morphs and is controlled by five genes clustered in the hemizygous, ca. 300-kb S locus. Here, we present the first chromosome-scale genome assembly of any heterostylous species, that of Primula veris (cowslip). By leveraging the high contiguity of the P. veris assembly and comparative genomic analyses, we demonstrated that the S-locus evolved via multiple, asynchronous gene duplications and independent gene translocations. Furthermore, we discovered a new whole-genome duplication in Ericales that is specific to the Primula lineage. We also propose a mechanism for the origin of S-locus hemizygosity via nonhomologous recombination involving the newly discovered two pairs of CFB genes flanking the S locus. Finally, we detected only weak signatures of degeneration in the S locus, as predicted for hemizygous supergenes. The present study provides a useful resource for future research addressing key questions on the evolution of supergenes in general and the S locus in particular: How do supergenes arise? What is the role of genome architecture in the evolution of complex adaptations? Is the molecular architecture of heterostyly supergenes across angiosperms similar to that of Primula?
Assuntos
Flores , Primula , Cromossomos , Flores/genética , Duplicação Gênica , Genômica , Humanos , Primula/genéticaRESUMO
Symbiosis with arbuscular mycorrhizal fungi (AMF) improves plant nutrition in most land plants, and its contribution to the colonization of land by plants has been hypothesized. Here, we identify a conserved transcriptomic response to AMF among land plants, including the activation of lipid metabolism. Using gain of function, we show the transfer of lipids from the liverwort Marchantia paleacea to AMF and its direct regulation by the transcription factor WRINKLED (WRI). Arbuscules, the nutrient-exchange structures, were not formed in loss-of-function wri mutants in M. paleacea, leading to aborted mutualism. Our results show the orthology of the symbiotic transfer of lipids across land plants and demonstrate that mutualism with arbuscular mycorrhizal fungi was present in the most recent ancestor of land plants 450 million years ago.
Assuntos
Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Marchantia/genética , Marchantia/metabolismo , Micorrizas/metabolismo , Proteínas de Plantas/metabolismo , Simbiose , Fatores de Transcrição/metabolismo , Transporte Biológico , Ácidos Graxos/biossíntese , Ácidos Graxos/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Marchantia/microbiologia , Mutação , Proteínas de Plantas/genética , Fatores de Transcrição/genéticaRESUMO
Marchantia polymorpha has recently become a prime model for cellular, evo-devo, synthetic biological, and evolutionary investigations. We present a pseudomolecule-scale assembly of the M. polymorpha genome, making comparative genome structure analysis and classical genetic mapping approaches feasible. We anchored 88% of the M. polymorpha draft genome to a high-density linkage map resulting in eight pseudomolecules. We found that the overall genome structure of M. polymorpha is in some respects different from that of the model moss Physcomitrella patens. Specifically, genome collinearity between the two bryophyte genomes and vascular plants is limited, suggesting extensive rearrangements since divergence. Furthermore, recombination rates are greatest in the middle of the chromosome arms in M. polymorpha like in most vascular plant genomes, which is in contrast with P. patens where recombination rates are evenly distributed along the chromosomes. Nevertheless, some other properties of the genome are shared with P. patens. As in P. patens, DNA methylation in M. polymorpha is spread evenly along the chromosomes, which is in stark contrast with the angiosperm model Arabidopsis thaliana, where DNA methylation is strongly enriched at the centromeres. Nevertheless, DNA methylation and recombination rate are anticorrelated in all three species. Finally, M. polymorpha and P. patens centromeres are of similar structure and marked by high abundance of retroelements unlike in vascular plants. Taken together, the highly contiguous genome assembly we present opens unexplored avenues for M. polymorpha research by linking the physical and genetic maps, making novel genomic and genetic analyses, including map-based cloning, feasible.