Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 88(16): e0089122, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35913152

RESUMO

Microbe-mediated transformations of arsenic (As) often require As to be taken up into cells prior to enzymatic reaction. Despite the importance of these microbial reactions for As speciation and toxicity, understanding of how As bioavailability and uptake are regulated by aspects of extracellular water chemistry, notably dissolved organic matter (DOM), remains limited. Whole-cell biosensors utilizing fluorescent proteins are increasingly used for high-throughput quantification of the bioavailable fraction of As in water. Here, we present a mathematical framework for interpreting the time series of biosensor fluorescence as a measure of As uptake kinetics, which we used to evaluate the effects of different forms of DOM on uptake of trivalent arsenite. We found that thiol-containing organic compounds significantly inhibited uptake of arsenite into cells, possibly through the formation of aqueous complexes between arsenite and thiol ligands. While there was no evidence for competitive interactions between arsenite and low-molecular-weight neutral molecules (urea, glycine, and glyceraldehyde) for uptake through the aquaglyceroporin channel GlpF, which mediates transport of arsenite across cell membranes, there was evidence that labile DOM fractions may inhibit arsenite uptake through a catabolite repression-like mechanism. The observation of significant inhibition of arsenite uptake at DOM/As ratios commonly encountered in wetland pore waters suggests that DOM may be an important control on the microbial uptake of arsenite in the environment, with aspects of DOM quality playing an important role in the extent of inhibition. IMPORTANCE The speciation and toxicity of arsenic in environments like rice paddy soils and groundwater aquifers are controlled by microbe-mediated reactions. These reactions often require As to be taken up into cells prior to enzymatic reaction, but there is limited understanding of how microbial arsenic uptake is affected by variations in water chemistry. In this study, we explored the effect of dissolved organic matter (DOM) quantity and quality on microbial As uptake, with a focus on the role of thiol functional groups that are well known to form aqueous complexes with arsenic. We developed a quantitative framework for interpreting fluorescence time series from whole-cell biosensors and used this technique to evaluate effects of DOM on the rates of microbial arsenic uptake. We show that thiol-containing compounds significantly decrease rates of As uptake into microbial cells at environmentally relevant DOM/As ratios, revealing the importance of DOM quality in regulating arsenic uptake, and subsequent biotransformation, in the environment.


Assuntos
Arsênio , Arsenitos , Técnicas Biossensoriais , Poluentes Químicos da Água , Arsênio/análise , Bactérias , Matéria Orgânica Dissolvida , Compostos de Sulfidrila , Água , Poluentes Químicos da Água/análise
2.
Aquat Toxicol ; 250: 106248, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35905632

RESUMO

The contamination of lakes by industrial emissions is an issue of international concern. Traditional paleolimnology examines sedimentary micro-fossils to infer the biological response to natural and anthropogenic stressors over time. Here, we calculate a theoretical biological effect for historic sediment sections using Probable Effect Concentration Quotient (PEC-Q) and arsenic specific quotient methods and develop novel time-constrained sediment toxicity test methods using a cultured Daphnia sp. combined with a whole cell microbial biosensor to assess the toxicity of past industrial contamination with modern testing methods. These methods were developed using sediments collected from Pocket Lake (Northwest Territories, Canada), a lake known to have exhibited a significant ecological shift following input from nearby gold smelter emissions during the mid 20th century. We then applied these methods to near-, mid-, and far-field sites to assess the response of Daphnia sp. to varying contaminant load. Daphnia sp. mortality exposed to dated sediments indicated a strong concordance with the timing of mining activities, and a strong concordance with PEC-Q and arsenic specific toxicity quotients. In contrast, a decrease in Daphnia mortality was observed during pre-, and post-mining periods when the contaminant burden was lower. Initial assessments of bioavailability using a microbial biosensor indicated that arsenic in porewater is 72-96% bioavailable, and limited evidence that oxidative stress may contribute to the Daphnia sp. toxic response. These results indicate that lake sediment archives can be used to infer missing biomonitoring data in sites of legacy anthropogenic influence, which will be useful for those seeking to conduct cost-effective and efficient preliminary environmental risk assessments.


Assuntos
Arsênio , Sedimentos Geológicos , Mineração , Poluentes Químicos da Água , Animais , Arsênio/toxicidade , Daphnia , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Ouro , Lagos , Poluentes Químicos da Água/toxicidade
3.
Sci Total Environ ; 716: 137118, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32059299

RESUMO

The presence of arsenic in irrigation and drinking waters is a threat to worldwide human health. Dissolved organic matter (DOM) is a ubiquitous and photoreactive sorbent of arsenic, capable of both suppressing and enhancing its mobility. Microbes can control the mobilization of mineral-bound arsenic, through redox processes thought to occur intracellularly. The role that DOM plays on the bioavailability of arsenic to microbes is often invoked but remains untested experimentally. Here, using a whole-cell biosensor, we tested the role of DOM on As(III) and As(V) bioavailability. Using cation amendments, we explored the nature of As-DOM interactions. We found As bioavailability to be dependent on [As]/[DOM] ratio and on the strength of As binding to DOM which varied as a function of time. We further tested the role of DOM on As(III) photooxidation and showed that As(III) photooxidation rate is limited by the strength of its interactions with DOM and sensitive to ionic competitive desorption. Our study demonstrates the dynamic control that photoreactive DOM poses on the bioavailability and reactivity of As in the environment and highlights the kinetic controls that DOM can possibly exert on As toxicity at various levels in foodwebs.


Assuntos
Bactérias , Arsênio , Disponibilidade Biológica , Minerais , Oxirredução
4.
Front Microbiol ; 9: 2310, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333804

RESUMO

Despite its high toxicity and widespread occurrence in many parts of the world, arsenic (As) concentrations in decentralized water supplies such as domestic wells remain often unquantified. One limitation to effective monitoring is the high cost and lack of portability of current arsenic speciation techniques. Here, we present an arsenic biosensor assay capable of quantifying and determining the bioavailable fraction of arsenic species at environmentally relevant concentrations. First, we found that inorganic phosphate, a buffering agent and nutrient commonly found in most bioassay exposure media, was in fact limiting As(V) uptake, possibly explaining the variability in As(V) detection reported so far. Second, we show that the nature of the carbon source used in the bioassay differentially affects the response of the biosensor to As(III). Finally, our data support the existence of non-specific reduction pathways (non-ars encoded) that are responsible for the reduction of As(V) to As(III), allowing its detection by the biosensor. To validate our laboratory approach using field samples, we performed As(III) and As(V) standard additions on natural water samples collected from 17 lakes surrounding Giant Mine in Yellowknife (NWT), Canada. We found that legacy arsenic contamination in these lake water samples was accurately quantified by the biosensor. Interestingly, bioavailability of freshly added standards showed signs of matrix interference, indicative of dynamic interactions between As(III), As(V) and environmental constituents that have yet to be identified. Our results point toward dissolved organic carbon as possibly controlling these interactions, thus altering As bioavailability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA