Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Psychiatry Res Neuroimaging ; 342: 111843, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38896909

RESUMO

Schizophrenia is associated with robust white matter (WM) abnormalities but influences of potentially confounding variables and relationships with cognitive performance and symptom severity remain to be fully determined. This study was designed to evaluate WM abnormalities based on diffusion tensor imaging (DTI) in individuals with schizophrenia, and their relationships with cognitive performance and symptom severity. Data from individuals with schizophrenia (SZ; n=138, mean age±SD=39.02±11.82; 105 males) and healthy controls (HC; n=143, mean age±SD=37.07±10.84; 102 males) were collected as part of the Function Biomedical Informatics Research Network Phase 3 study. Fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) were compared between individuals with schizophrenia and healthy controls, and their relationships with neurocognitive performance and symptomatology assessed. Individuals with SZ had significantly lower FA in forceps minor and the left inferior fronto-occipital fasciculus compared to HC. FA in several tracts were associated with speed of processing and attention/vigilance and the severity of the negative symptom alogia. This study suggests that regional WM abnormalities are fundamentally involved in the pathophysiology of schizophrenia and may contribute to cognitive performance deficits and symptom expression observed in schizophrenia.

2.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961617

RESUMO

Objective: Schizophrenia is a multifaceted disorder associated with structural brain heterogeneity. Despite its relevance for identifying illness subtypes and informative biomarkers, structural brain heterogeneity in schizophrenia remains incompletely understood. Therefore, the objective of this study was to provide a comprehensive insight into the structural brain heterogeneity associated with schizophrenia. Methods: This meta- and mega-analysis investigated the variability of multimodal structural brain measures of white and gray matter in individuals with schizophrenia versus healthy controls. Using the ENIGMA dataset of MRI-based brain measures from 22 international sites with up to 6139 individuals for a given brain measure, we examined variability in cortical thickness, surface area, folding index, subcortical volume and fractional anisotropy. Results: We found that individuals with schizophrenia are distinguished by higher heterogeneity in the frontotemporal network with regard to multimodal structural measures. Moreover, individuals with schizophrenia showed higher homogeneity of the folding index, especially in the left parahippocampal region. Conclusions: Higher multimodal heterogeneity in frontotemporal regions potentially implies different subtypes of schizophrenia that converge on impaired frontotemporal interaction as a core feature of the disorder. Conversely, more homogeneous folding patterns in the left parahippocampal region might signify a consistent characteristic of schizophrenia shared across subtypes. These findings underscore the importance of structural brain variability in advancing our neurobiological understanding of schizophrenia, and aid in identifying illness subtypes as well as informative biomarkers.

3.
Psychiatry Res Neuroimaging ; 335: 111710, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37690161

RESUMO

Individuals with schizophrenia (SZ) show aberrant activations, assessed via functional magnetic resonance imaging (fMRI), during auditory oddball tasks. However, associations with cognitive performance and genetic contributions remain unknown. This study compares individuals with SZ to healthy volunteers (HVs) using two cross-sectional data sets from multi-center brain imaging studies. It examines brain activation to auditory oddball targets, and their associations with cognitive domain performance, schizophrenia polygenic risk scores (PRS), and genetic variation (loci). Both sample 1 (137 SZ vs. 147 HV) and sample 2 (91 SZ vs. 98 HV), showed hypoactivation in SZ in the left-frontal pole, and right frontal orbital, frontal pole, paracingulate, intracalcarine, precuneus, supramarginal and hippocampal cortices, and right thalamus. In SZ, precuneus activity was positively related to cognitive performance. Schizophrenia PRS showed a negative correlation with brain activity in the right-supramarginal cortex. GWA analyses revealed significant single-nucleotide polymorphisms associated with right-supramarginal gyrus activity. RPL36 also predicted right-supramarginal gyrus activity. In addition to replicating hypoactivation for oddball targets in SZ, this study identifies novel relationships between regional activity, cognitive performance, and genetic loci that warrant replication, emphasizing the need for continued data sharing and collaborative efforts.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Esquizofrenia/complicações , Estudos Transversais , Encéfalo , Córtex Cerebral , Lobo Frontal
4.
Mol Psychiatry ; 28(10): 4363-4373, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37644174

RESUMO

Converging evidence suggests that schizophrenia (SZ) with primary, enduring negative symptoms (i.e., Deficit SZ (DSZ)) represents a distinct entity within the SZ spectrum while the neurobiological underpinnings remain undetermined. In the largest dataset of DSZ and Non-Deficit (NDSZ), we conducted a meta-analysis of data from 1560 individuals (168 DSZ, 373 NDSZ, 1019 Healthy Controls (HC)) and a mega-analysis of a subsampled data from 944 individuals (115 DSZ, 254 NDSZ, 575 HC) collected across 9 worldwide research centers of the ENIGMA SZ Working Group (8 in the mega-analysis), to clarify whether they differ in terms of cortical morphology. In the meta-analysis, sites computed effect sizes for differences in cortical thickness and surface area between SZ and control groups using a harmonized pipeline. In the mega-analysis, cortical values of individuals with schizophrenia and control participants were analyzed across sites using mixed-model ANCOVAs. The meta-analysis of cortical thickness showed a converging pattern of widespread thinner cortex in fronto-parietal regions of the left hemisphere in both DSZ and NDSZ, when compared to HC. However, DSZ have more pronounced thickness abnormalities than NDSZ, mostly involving the right fronto-parietal cortices. As for surface area, NDSZ showed differences in fronto-parietal-temporo-occipital cortices as compared to HC, and in temporo-occipital cortices as compared to DSZ. Although DSZ and NDSZ show widespread overlapping regions of thinner cortex as compared to HC, cortical thinning seems to better typify DSZ, being more extensive and bilateral, while surface area alterations are more evident in NDSZ. Our findings demonstrate for the first time that DSZ and NDSZ are characterized by different neuroimaging phenotypes, supporting a nosological distinction between DSZ and NDSZ and point toward the separate disease hypothesis.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/genética , Imageamento por Ressonância Magnética , Neuroimagem , Lobo Parietal , Síndrome , Córtex Cerebral/diagnóstico por imagem
5.
bioRxiv ; 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37461731

RESUMO

Schizophrenia (SZ) is a complex psychiatric disorder that is currently defined by symptomatic and behavioral, rather than biological, criteria. Neuroimaging is an appealing avenue for SZ biomarker development, as several neuroimaging-based studies comparing individuals with SZ to healthy controls (HC) have shown measurable group differences in brain structure, as well as functional brain alterations in both static and dynamic functional network connectivity (sFNC and dFNC, respectively). The recently proposed filter-banked connectivity (FBC) method extends the standard dFNC sliding-window approach to estimate FNC within an arbitrary number of distinct frequency bands. The initial implementation used a set of filters spanning the full connectivity spectral range, providing a unified approach to examine both sFNC and dFNC in a single analysis. Initial FBC results found that individuals with SZ spend more time in a less structured, more disconnected low-frequency (i.e., static) FNC state than HC, as well as preferential SZ occupancy in high-frequency connectivity states, suggesting a frequency-specific component underpinning the functional dysconnectivity observed in SZ. Building on these findings, we sought to link such frequency-specific patterns of FNC to covarying data-driven structural brain networks in the context of SZ. Specifically, we employ a multi-set canonical correlation analysis + joint independent components analysis (mCCA + jICA) data fusion framework to study the connection between grey matter volume (GMV) maps and FBC states across the full connectivity frequency spectrum. Our multimodal analysis identified two joint sources that captured co-varying patterns of frequency-specific functional connectivity and alterations in GMV with significant group differences in loading parameters between the SZ group and HC. The first joint source linked frequency-modulated connections between the subcortical and sensorimotor networks and GMV alterations in the frontal and temporal lobes, while the second joint source identified a relationship between low-frequency cerebellar-sensorimotor connectivity and structural changes in both the cerebellum and motor cortex. Together, these results show a strong connection between cortico-subcortical functional connectivity at both high and low frequencies and alterations in cortical GMV that may be relevant to the pathogenesis and pathophysiology of SZ.

6.
Neuroimage Clin ; 38: 103434, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37209635

RESUMO

Brain functional networks identified from resting functional magnetic resonance imaging (fMRI) data have the potential to reveal biomarkers for brain disorders, but studies of complex mental illnesses such as schizophrenia (SZ) often yield mixed results across replication studies. This is likely due in part to the complexity of the disorder, the short data acquisition time, and the limited ability of the approaches for brain imaging data mining. Therefore, the use of analytic approaches which can both capture individual variability while offering comparability across analyses is highly preferred. Fully blind data-driven approaches such as independent component analysis (ICA) are hard to compare across studies, and approaches that use fixed atlas-based regions can have limited sensitivity to individual sensitivity. By contrast, spatially constrained ICA (scICA) provides a hybrid, fully automated solution that can incorporate spatial network priors while also adapting to new subjects. However, scICA has thus far only been used with a single spatial scale (ICA dimensionality, i.e., ICA model order). In this work, we present an approach using multi-objective optimization scICA with reference algorithm (MOO-ICAR) to extract subject-specific intrinsic connectivity networks (ICNs) from fMRI data at multiple spatial scales, which also enables us to study interactions across spatial scales. We evaluate this approach using a large N (N > 1,600) study of schizophrenia divided into separate validation and replication sets. A multi-scale ICN template was estimated and labeled, then used as input into scICA which was computed on an individual subject level. We then performed a subsequent analysis of multiscale functional network connectivity (msFNC) to evaluate the patient data, including group differences and classification. Results showed highly consistent group differences in msFNC in regions including cerebellum, thalamus, and motor/auditory networks. Importantly, multiple msFNC pairs linking different spatial scales were implicated. The classification model built on the msFNC features obtained up to 85% F1 score, 83% precision, and 88% recall, indicating the strength of the proposed framework in detecting group differences between schizophrenia and the control group. Finally, we evaluated the relationship of the identified patterns to positive symptoms and found consistent results across datasets. The results verified the robustness of our framework in evaluating brain functional connectivity of schizophrenia at multiple spatial scales, implicated consistent and replicable brain networks, and highlighted a promising approach for leveraging resting fMRI data for brain biomarker development.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Cerebelo , Biomarcadores
7.
Hum Brain Mapp ; 44(6): 2620-2635, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36840728

RESUMO

Resting-state functional network connectivity (rsFNC) has shown utility for identifying characteristic functional brain patterns in individuals with psychiatric and mood disorders, providing a promising avenue for biomarker development. However, several factors have precluded widespread clinical adoption of rsFNC diagnostics, namely a lack of standardized approaches for capturing comparable and reproducible imaging markers across individuals, as well as the disagreement on the amount of data required to robustly detect intrinsic connectivity networks (ICNs) and diagnostically relevant patterns of rsFNC at the individual subject level. Recently, spatially constrained independent component analysis (scICA) has been proposed as an automated method for extracting ICNs standardized to a chosen network template while still preserving individual variation. Leveraging the scICA methodology, which solves the former challenge of standardized neuroimaging markers, we investigate the latter challenge of identifying a minimally sufficient data length for clinical applications of resting-state fMRI (rsfMRI). Using a dataset containing rsfMRI scans of individuals with schizophrenia and controls (M = 310) as well as simulated rsfMRI, we evaluated the robustness of ICN and rsFNC estimates at both the subject- and group-level, as well as the performance of diagnostic classification, with respect to the length of the rsfMRI time course. We found individual estimates of ICNs and rsFNC from the full-length (5 min) reference time course were sufficiently approximated with just 3-3.5 min of data (r = 0.85, 0.88, respectively), and significant differences in group-average rsFNC could be sufficiently approximated with even less data, just 2 min (r = 0.86). These results from the shorter clinical data were largely consistent with the results from validation experiments using longer time series from both simulated (30 min) and real-world (14 min) datasets, in which estimates of subject-level FNC were reliably estimated with 3-5 min of data. Moreover, in the real-world data we found rsFNC and ICN estimates generated across the full range of data lengths (0.5-14 min) more reliably matched those generated from the first 5 min of scan time than those generated from the last 5 min, suggesting increased influence of "late scan" noise factors such as fatigue or drowsiness may limit the reliability of FNC from data collected after 10+ min of scan time, further supporting the notion of shorter scans. Lastly, a diagnostic classification model trained on just 2 min of data retained 97%-98% classification accuracy relative to that of the full-length reference model. Our results suggest that, when decomposed with scICA, rsfMRI scans of just 2-5 min show good clinical utility without significant loss of individual FNC information of longer scan lengths.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Neuroimagem , Transtornos do Humor , Mapeamento Encefálico/métodos
8.
Psychiatry Res Neuroimaging ; 329: 111597, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36680843

RESUMO

This study examined associations between resting-state amplitude of low frequency fluctuations (ALFF) and negative symptoms represented by total scores, second-order dimension (motivation and pleasure, expressivity), and first-order domain (anhedonia, avolition, asociality, alogia, blunted affect) factor scores in schizophrenia (n = 57). Total negative symptom scores showed positive associations with ALFF in temporal and frontal brain regions. Negative symptom domain scores showed predominantly stronger associations with regional ALFF compared to total scores, suggesting domain scores may better map to neural signatures than total scores. Improving our understanding of the neuropathology underlying negative symptoms may aid in addressing this unmet therapeutic need in schizophrenia.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Anedonia , Encéfalo/diagnóstico por imagem , Transtornos do Humor , Motivação
9.
Schizophr Bull ; 48(6): 1306-1317, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-35988022

RESUMO

BACKGROUND AND HYPOTHESIS: Schizophrenia (SZ) and bipolar disorder (BD) share genetic risk factors, yet patients display differential levels of cognitive impairment. We hypothesized a genome-transcriptome-functional connectivity (frontoparietal)-cognition pathway linked to SZ-versus-BD differences, and conducted a multiscale study to delineate this pathway. STUDY DESIGNS: Large genome-wide studies provided single nucleotide polymorphisms (SNPs) conferring more risk for SZ than BD, and we identified their regulated genes, namely SZ-biased SNPs and genes. We then (a) computed the polygenic risk score for SZ (PRSSZ) of SZ-biased SNPs and examined its associations with imaging-based frontoparietal functional connectivity (FC) and cognitive performances; (b) examined the spatial correlation between ex vivo postmortem expressions of SZ-biased genes and in vivo, SZ-related FC disruptions across frontoparietal regions; (c) investigated SZ-versus-BD differences in frontoparietal FC; and (d) assessed the associations of frontoparietal FC with cognitive performances. STUDY RESULTS: PRSSZ of SZ-biased SNPs was significantly associated with frontoparietal FC and working memory test scores. SZ-biased genes' expressions significantly correlated with SZ-versus-BD differences in FC across frontoparietal regions. SZ patients showed more reductions in frontoparietal FC than BD patients compared to controls. Frontoparietal FC was significantly associated with test scores of multiple cognitive domains including working memory, and with the composite scores of all cognitive domains. CONCLUSIONS: Collectively, these multiscale findings support the hypothesis that SZ-biased genetic risk, through transcriptome regulation, is linked to frontoparietal dysconnectivity, which in turn contributes to differential cognitive deficits in SZ-versus BD, suggesting that potential biomarkers for more precise patient stratification and treatment.


Assuntos
Transtorno Bipolar , Transtornos Cognitivos , Esquizofrenia , Humanos , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/genética , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Transcriptoma , Cognição
10.
Netw Neurosci ; 6(2): 357-381, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35733435

RESUMO

We introduce an extension of independent component analysis (ICA), called multiscale ICA, and design an approach to capture dynamic functional source interactions within and between multiple spatial scales. Multiscale ICA estimates functional sources at multiple spatial scales without imposing direct constraints on the size of functional sources, overcomes the limitation of using fixed anatomical locations, and eliminates the need for model-order selection in ICA analysis. We leveraged this approach to study sex-specific and sex-common connectivity patterns in schizophrenia. Results show dynamic reconfiguration and interaction within and between multi-spatial scales. Sex-specific differences occur (a) within the subcortical domain, (b) between the somatomotor and cerebellum domains, and (c) between the temporal domain and several others, including the subcortical, visual, and default mode domains. Most of the sex-specific differences belong to between-spatial-scale functional interactions and are associated with a dynamic state with strong functional interactions between the visual, somatomotor, and temporal domains and their anticorrelation patterns with the rest of the brain. We observed significant correlations between multi-spatial-scale functional interactions and symptom scores, highlighting the importance of multiscale analyses to identify potential biomarkers for schizophrenia. As such, we recommend such analyses as an important option for future functional connectivity studies.

11.
Hum Brain Mapp ; 43(15): 4556-4566, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35762454

RESUMO

In this work, we focus on explicitly nonlinear relationships in functional networks. We introduce a technique using normalized mutual information (NMI) that calculates the nonlinear relationship between different brain regions. We demonstrate our proposed approach using simulated data and then apply it to a dataset previously studied by Damaraju et al. This resting-state fMRI data included 151 schizophrenia patients and 163 age- and gender-matched healthy controls. We first decomposed these data using group independent component analysis (ICA) and yielded 47 functionally relevant intrinsic connectivity networks. Our analysis showed a modularized nonlinear relationship among brain functional networks that was particularly noticeable in the sensory and visual cortex. Interestingly, the modularity appears both meaningful and distinct from that revealed by the linear approach. Group analysis identified significant differences in explicitly nonlinear functional network connectivity (FNC) between schizophrenia patients and healthy controls, particularly in the visual cortex, with controls showing more nonlinearity (i.e., higher normalized mutual information between time courses with linear relationships removed) in most cases. Certain domains, including subcortical and auditory, showed relatively less nonlinear FNC (i.e., lower normalized mutual information), whereas links between the visual and other domains showed evidence of substantial nonlinear and modular properties. Overall, these results suggest that quantifying nonlinear dependencies of functional connectivity may provide a complementary and potentially important tool for studying brain function by exposing relevant variation that is typically ignored. Beyond this, we propose a method that captures both linear and nonlinear effects in a "boosted" approach. This method increases the sensitivity to group differences compared to the standard linear approach, at the cost of being unable to separate linear and nonlinear effects.


Assuntos
Esquizofrenia , Córtex Visual , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética/métodos , Descanso , Esquizofrenia/diagnóstico por imagem , Córtex Visual/diagnóstico por imagem
12.
Hum Brain Mapp ; 43(1): 352-372, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34498337

RESUMO

Schizophrenia is associated with widespread alterations in subcortical brain structure. While analytic methods have enabled more detailed morphometric characterization, findings are often equivocal. In this meta-analysis, we employed the harmonized ENIGMA shape analysis protocols to collaboratively investigate subcortical brain structure shape differences between individuals with schizophrenia and healthy control participants. The study analyzed data from 2,833 individuals with schizophrenia and 3,929 healthy control participants contributed by 21 worldwide research groups participating in the ENIGMA Schizophrenia Working Group. Harmonized shape analysis protocols were applied to each site's data independently for bilateral hippocampus, amygdala, caudate, accumbens, putamen, pallidum, and thalamus obtained from T1-weighted structural MRI scans. Mass univariate meta-analyses revealed more-concave-than-convex shape differences in the hippocampus, amygdala, accumbens, and thalamus in individuals with schizophrenia compared with control participants, more-convex-than-concave shape differences in the putamen and pallidum, and both concave and convex shape differences in the caudate. Patterns of exaggerated asymmetry were observed across the hippocampus, amygdala, and thalamus in individuals with schizophrenia compared to control participants, while diminished asymmetry encompassed ventral striatum and ventral and dorsal thalamus. Our analyses also revealed that higher chlorpromazine dose equivalents and increased positive symptom levels were associated with patterns of contiguous convex shape differences across multiple subcortical structures. Findings from our shape meta-analysis suggest that common neurobiological mechanisms may contribute to gray matter reduction across multiple subcortical regions, thus enhancing our understanding of the nature of network disorganization in schizophrenia.


Assuntos
Tonsila do Cerebelo/patologia , Corpo Estriado/patologia , Hipocampo/patologia , Neuroimagem , Esquizofrenia/patologia , Tálamo/patologia , Tonsila do Cerebelo/diagnóstico por imagem , Corpo Estriado/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Humanos , Estudos Multicêntricos como Assunto , Esquizofrenia/diagnóstico por imagem , Tálamo/diagnóstico por imagem
13.
Brain Connect ; 12(7): 617-628, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34541879

RESUMO

Background: While functional connectivity is widely studied, there has been little work studying functional connectivity at different spatial scales. Likewise, the relationship of functional connectivity between spatial scales is unknown. Methods: We proposed an independent component analysis (ICA)-based approach to capture information at multiple-model orders (component numbers), and to evaluate functional network connectivity (FNC) both within and between model orders. We evaluated the approach by studying group differences in the context of a study of resting-state functional magnetic resonance imaging (rsfMRI) data collected from schizophrenia (SZ) individuals and healthy controls (HC). The predictive ability of FNC at multiple spatial scales was assessed using support vector machine-based classification. Results: In addition to consistent predictive patterns at both multiple-model orders and single-model orders, unique predictive information was seen at multiple-model orders and in the interaction between model orders. We observed that the FNC between model orders 25 and 50 maintained the highest predictive information between HC and SZ. Results highlighted the predictive ability of the somatomotor and visual domains both within and between model orders compared with other functional domains. Also, subcortical-somatomotor, temporal-somatomotor, and temporal-subcortical FNCs had relatively high weights in predicting SZ. Conclusions: In sum, multimodel order ICA provides a more comprehensive way to study FNC, produces meaningful and interesting results, which are applicable to future studies. We shared the spatial templates from this work at different model orders to provide a reference for the community, which can be leveraged in regression-based or fully automated (spatially constrained) ICA approaches. Impact statement Multimodel order independent component analysis (ICA) provides a comprehensive way to study brain functional network connectivity within and between multiple spatial scales, highlighting findings that would have been ignored in single-model order analysis. This work expands upon and adds to the relatively new literature on resting functional magnetic resonance imaging-based classification and prediction. Results highlighted the differentiating power of specific intrinsic connectivity networks on classifying brain disorders of schizophrenia patients and healthy participants, at different spatial scales. The spatial templates from this work provide a reference for the community, which can be leveraged in regression-based or fully automated ICA approaches.


Assuntos
Encéfalo , Esquizofrenia , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Descanso
14.
Biol Psychiatry ; 90(8): 529-539, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33875230

RESUMO

BACKGROUND: Dysfunctional reward processing is implicated in multiple mental disorders. Novelty seeking (NS) assesses preference for seeking novel experiences, which is linked to sensitivity to reward environmental cues. METHODS: A subset of 14-year-old adolescents (IMAGEN) with the top 20% ranked high-NS scores was used to identify high-NS-associated multimodal components by supervised fusion. These features were then used to longitudinally predict five different risk scales for the same and unseen subjects (an independent dataset of subjects at 19 years of age that was not used in predictive modeling training at 14 years of age) (within IMAGEN, n ≈1100) and even for the corresponding symptom scores of five types of patient cohorts (non-IMAGEN), including drinking (n = 313), smoking (n = 104), attention-deficit/hyperactivity disorder (n = 320), major depressive disorder (n = 81), and schizophrenia (n = 147), as well as to classify different patient groups with diagnostic labels. RESULTS: Multimodal biomarkers, including the prefrontal cortex, striatum, amygdala, and hippocampus, associated with high NS in 14-year-old adolescents were identified. The prediction models built on these features are able to longitudinally predict five different risk scales, including alcohol drinking, smoking, hyperactivity, depression, and psychosis for the same and unseen 19-year-old adolescents and even predict the corresponding symptom scores of five types of patient cohorts. Furthermore, the identified reward-related multimodal features can classify among attention-deficit/hyperactivity disorder, major depressive disorder, and schizophrenia with an accuracy of 87.2%. CONCLUSIONS: Adolescents with higher NS scores can be used to reveal brain alterations in the reward-related system, implicating potential higher risk for subsequent development of multiple disorders. The identified high-NS-associated multimodal reward-related signatures may serve as a transdiagnostic neuroimaging biomarker to predict disease risks or severity.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno Depressivo Maior , Adolescente , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Biomarcadores , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/epidemiologia , Humanos , Imageamento por Ressonância Magnética , Recompensa , Adulto Jovem
15.
Drug Dev Res ; 82(5): 678-684, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32394511

RESUMO

Tardive dyskinesia (TD) is a potentially irreversible movement disorder observed following long-term antipsychotic exposure. Its cause is unknown; however, a genetic component has been supported by studies of affected families. Dysbindin-1, encoded by the dystrobrevin-binding protein 1 DTNBP1 gene, has been associated with schizophrenia and is potentially involved in dopamine neurotransmission through its regulation of dopamine release and dopamine D2 receptor recycling, making it a candidate for investigation in TD. We investigated common variants across the DTNBP1 gene in our schizophrenia/patients with schizoaffective disorder of European ancestry. We found a number of DTNBP1 three-marker haplotypes to be associated with TD occurrence and TD severity (p < 0.05). These preliminary findings, if replicated in larger independent samples, would suggest that drugs targeting dysbindin-1 may be an option in the prevention and treatment of TD.


Assuntos
Disbindina/genética , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Discinesia Tardia/induzido quimicamente , Discinesia Tardia/genética , Adulto , Feminino , Predisposição Genética para Doença , Genótipo , Haplótipos , Humanos , Masculino
17.
Alzheimers Dement (Amst) ; 12(1): e12126, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33204814

RESUMO

INTRODUCTION: Down syndrome (DS) is associated with elevated risk for Alzheimer's disease (AD) due to amyloid beta (Aß) lifelong accumulation. We hypothesized that the spatial distribution of brain Aß predicts future dementia conversion in individuals with DS. METHODS: We acquired 18F-florbetapir positron emission tomography scans from 19 nondemented individuals with DS at baseline and monitored them for 4 years, with five individuals transitioning to dementia. Machine learning classification using an independent test set determined features on 18F-florbetapir standardized uptake value ratio maps that predicted transition. RESULTS: In addition to "AD signature" regions including the inferior parietal cortex, temporal lobes, and the cingulum, we found that Aß cortical binding in the prefrontal and superior frontal cortices distinguished subjects who transitioned to dementia. Classification did well in predicting transitioners. DISCUSSION: Our study suggests that specific regional profiles of brain amyloid in older adults with DS may predict cognitive decline and are informative in evaluating the risk for dementia.

18.
Pharmacogenomics ; 21(15): 1065-1072, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32969762

RESUMO

Background: Tardive dyskinesia (TD) is an iatrogenic involuntary movement disorder occurring after extended antipsychotic use with unclear pathogenesis. CYP2D6 is a liver enzyme involved in antipsychotic metabolism and a well-studied gene candidate for TD. Materials & methods: We tested predicted CYP2D6 metabolizer phenotype with TD occurrence and severity in our two samples of European chronic schizophrenia patients (total n = 198, of which 82 had TD). Results: TD occurrence were associated with extreme metabolizer phenotype, controlling for age and sex (p = 0.012). In other words, individuals with either increased and no CYP2D6 activity were at higher risk of having TD. Conclusion: Unlike most previous findings, TD occurrence may be associated with both extremes of CYP2D6 metabolic activity rather than solely for poor metabolizers.


Assuntos
Citocromo P-450 CYP2D6/genética , Fígado/metabolismo , Esquizofrenia/genética , Discinesia Tardia/genética , População Branca/genética , Adulto , Antipsicóticos/metabolismo , Antipsicóticos/farmacologia , Citocromo P-450 CYP2D6/metabolismo , Feminino , Humanos , Fígado/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Esquizofrenia/tratamento farmacológico , Esquizofrenia/enzimologia , Discinesia Tardia/enzimologia , Discinesia Tardia/epidemiologia
19.
Psychiatry Res Neuroimaging ; 301: 111085, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32450497

RESUMO

Impulsivity in schizophrenia is a risk factor for suicide, drug abuse, and other risk-taking behaviors. This exploratory, multicenter, randomized, double-blind, functional magnetic resonance imaging (fMRI) study assessed the effects of brexpiprazole on brain regions that control impulsive behavior. Thirty-eight outpatients with stable schizophrenia and impulsivity symptoms were randomized to 6 weeks of brexpiprazole 2 or 4 mg/day. The prespecified outcome measure was blood oxygen-level dependent (BOLD) activation in the right ventrolateral prefrontal cortex (VLPFC) during performance of tasks associated with inhibition/control of impulsivity: the go/no-go task and stop-signal task. Secondary objectives evaluated the efficacy, safety and tolerability of brexpiprazole. Over 6 weeks, patients receiving brexpiprazole had no statistically significant change in right VLPFC BOLD activation during the go/no-go task, but showed a significant decrease in right VLPFC BOLD activation during the stop-signal task. Brexpiprazole was also associated with significantly improved stop-signal reaction time (SSRT). No worsening of psychiatric symptoms, functioning, or impulsivity occurred in these patients. No unexpected safety or tolerability concerns were identified. In conclusion, brexpiprazole treatment among patients with schizophrenia and impulsivity was associated with decreased right VLPFC activation and decreased SSRT, supportive of a benefit of brexpiprazole on inhibition-related brain activation and behavior. ClinicalTrials.gov identifier: NCT02194933.


Assuntos
Agonistas de Dopamina/administração & dosagem , Comportamento Impulsivo/efeitos dos fármacos , Imageamento por Ressonância Magnética , Quinolonas/administração & dosagem , Esquizofrenia/tratamento farmacológico , Tiofenos/administração & dosagem , Adulto , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/efeitos dos fármacos , Método Duplo-Cego , Feminino , Humanos , Inibição Psicológica , Masculino , Pessoa de Meia-Idade , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/fisiopatologia , Análise e Desempenho de Tarefas , Resultado do Tratamento , Adulto Jovem
20.
J Clin Psychiatry ; 81(2)2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32141723

RESUMO

OBJECTIVE: To assess the antipsychotic efficacy and safety of a combination of olanzapine and samidorphan (OLZ/SAM). METHODS: This 4-week, phase 3, randomized, double-blind, placebo- and olanzapine-controlled study was conducted from December 2015 to June 2017 in adults with schizophrenia according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria who were experiencing an acute exacerbation. Patients were randomized 1:1:1 to OLZ/SAM, olanzapine monotherapy, or placebo. The primary and key secondary efficacy endpoint assessed was the change in Positive and Negative Syndrome Scale (PANSS) total score and Clinical Global Impressions-Severity of Illness Scale (CGI-S) score between baseline and week 4, respectively, for OLZ/SAM versus placebo. Safety monitoring occurred throughout. RESULTS: 401 patients received ≥ 1 dose of study drug; 352 completed treatment. Treatment with OLZ/SAM resulted in significant improvements versus placebo in PANSS total and CGI-S scores from baseline to week 4 (least squares [LS] mean ± SE: -6.4 ± 1.8 [P < .001] and -0.38 ± 0.12 [P = .002], respectively). Olanzapine treatment resulted in similar improvements (PANSS and CGI-S LS mean ± SE of -5.3 ± 1.84 [P = .004] and -0.44 ± 0.12 [P < .001], respectively). Adverse events (AEs) occurred in 54.5%, 54.9%, and 44.8% of patients on OLZ/SAM, olanzapine, and placebo, respectively. Weight gain, somnolence, dry mouth, anxiety, and headache were the most common AEs (ie, ≥ 5%) with active treatment. CONCLUSIONS: OLZ/SAM treatment resulted in statistically and clinically significant efficacy improvements over 4 weeks versus placebo in adults with acutely exacerbated schizophrenia. Improvements were similar to those observed with olanzapine. OLZ/SAM was well tolerated, with a safety profile similar to that of olanzapine. TRIAL REGISTRATIONS: ClinicalTrials.gov identifier: NCT02634346; EudraCT number: 2015-003373-15​​.


Assuntos
Antipsicóticos/farmacologia , Naltrexona/análogos & derivados , Antagonistas de Entorpecentes/farmacologia , Olanzapina/farmacologia , Avaliação de Resultados em Cuidados de Saúde , Esquizofrenia/tratamento farmacológico , Exacerbação dos Sintomas , Doença Aguda , Adulto , Antipsicóticos/administração & dosagem , Método Duplo-Cego , Combinação de Medicamentos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Naltrexona/administração & dosagem , Naltrexona/farmacologia , Antagonistas de Entorpecentes/administração & dosagem , Olanzapina/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA