Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Neurosci ; 16: 952275, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36177357

RESUMO

Given the widespread prevalence of sleep disorders and their impacts on health, it is critical that researchers continue to identify and evaluate novel avenues of treatment. Recently the melanin-concentrating hormone (MCH) system has attracted commercial and scientific interest as a potential target of pharmacotherapy for sleep disorders. This interest emerges from basic scientific research demonstrating a role for MCH in regulating sleep, and particularly REM sleep. In addition to this role in sleep regulation, the MCH system and the MCH receptor 1 (MCHR1) have been implicated in a wide variety of other physiological functions and behaviors, including feeding/metabolism, reward, anxiety, depression, and learning. The basic research literature on sleep and the MCH system, and the history of MCH drug development, provide cause for both skepticism and cautious optimism about the prospects of MCH-targeting drugs in sleep disorders. Extensive efforts have focused on developing MCHR1 antagonists for use in obesity, however, few of these drugs have advanced to clinical trials, and none have gained regulatory approval. Additional basic research will be needed to fully characterize the MCH system's role in sleep regulation, for example, to fully differentiate between MCH-neuron and peptide/receptor-mediated functions. Additionally, a number of issues relating to drug design will continue to pose a practical challenge for novel pharmacotherapies targeting the MCH system.

2.
Nat Neurosci ; 25(9): 1191-1200, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36042309

RESUMO

We show that the sex of human experimenters affects mouse behaviors and responses following administration of the rapid-acting antidepressant ketamine and its bioactive metabolite (2R,6R)-hydroxynorketamine. Mice showed aversion to the scent of male experimenters, preference for the scent of female experimenters and increased stress susceptibility when handled by male experimenters. This human-male-scent-induced aversion and stress susceptibility was mediated by the activation of corticotropin-releasing factor (CRF) neurons in the entorhinal cortex that project to hippocampal area CA1. Exposure to the scent of male experimenters before ketamine administration activated CA1-projecting entorhinal cortex CRF neurons, and activation of this CRF pathway modulated in vivo and in vitro antidepressant-like effects of ketamine. A better understanding of the specific and quantitative contributions of the sex of human experimenters to study outcomes in rodents may improve replicability between studies and, as we have shown, reveal biological and pharmacological mechanisms.


Assuntos
Comportamento Animal , Ketamina , Pesquisadores , Caracteres Sexuais , Animais , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Hormônio Liberador da Corticotropina/metabolismo , Feminino , Hipocampo/metabolismo , Humanos , Ketamina/farmacologia , Masculino , Camundongos , Neurônios/metabolismo
3.
Neuron ; 105(1): 1-3, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31951525

RESUMO

In this issue of Neuron, Joffe et al. (2020) assess the antidepressant-relevant effects and underlying neural mechanisms of negative allosteric modulators selective for either metabotropic glutamate receptors 2 (mGlu2) or 3 (mGlu3). Negative modulation of both receptors enhanced excitatory glutamatergic input to mouse prefrontal cortex pyramidal cells, leading to antidepressant-relevant actions.


Assuntos
Antidepressivos , Células Piramidais , Animais , Camundongos , Neurônios , Córtex Pré-Frontal
4.
Neuroscience ; 383: 205-215, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29752984

RESUMO

The putative strong anti-nociceptive properties of the antidepressant phenelzine (PLZ) have not been widely explored as a treatment for pain. Antinociceptive effects of PLZ were identified in the formalin model of tonic pain (Mifflin et al., 2016) and in allodynia associated with experimental autoimmune encephalomyelitis, (EAE) a mouse model of multiple sclerosis (Potter et al., 2016). Here, we further clarify the specific types of stimuli and contexts in which PLZ modulates nociceptive sensitivity. Our findings indicate that PLZ selectively inhibits ongoing inflammatory pain while sparing transient reflexive and acute nociception. We also investigated the cellular mechanisms of action of PLZ in the dorsal horn, and as expected of a monoamine-oxidase inhibitor, PLZ increased serotonin (5HT) immunoreactivity. We next used two approaches to test the hypothesis that PLZ inhibits the activation of spinal nociresponsive neurons. First, we evaluated the formalin-evoked protein expression of the immediate early gene, c-fos. PLZ reduced Fos expression in the superficial dorsal horn. Second, we evaluated the effects of PLZ on intracellular calcium responses to superfusion of glutamate (0.3-1.0 mM) in an ex vivo lumbar spinal cord slice preparation. Superfusion with PLZ (100-300 µM) reduced 1 mM glutamate-evoked calcium responses. This was blocked by pretreatment with the 5HT1A-receptor antagonist WAY-100,635, but not the alpha-2 adrenergic antagonist idazoxan. We conclude that PLZ exerts antinociceptive effects through a 5-HT/5HT1AR-dependent inhibition of neuronal responses within nociceptive circuits of the dorsal horn.


Assuntos
Antidepressivos/farmacologia , Neurônios/efeitos dos fármacos , Fenelzina/farmacologia , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Animais , Feminino , Hiperalgesia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Dor/metabolismo , Receptores 5-HT1 de Serotonina/metabolismo , Serotonina/metabolismo , Corno Dorsal da Medula Espinal/metabolismo
5.
J Neuroinflammation ; 13(1): 142, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27282914

RESUMO

BACKGROUND: Chronic neuropathic pain is a common symptom of multiple sclerosis (MS). MOG35-55-induced experimental autoimmune encephalomyelitis (EAE) has been used as an animal model to investigate the mechanisms of pain in MS. Previous studies have implicated sensitization of spinal nociceptive networks in the pathogenesis of pain in EAE. However, the involvement of supraspinal sites of nociceptive integration, such as the primary somatosensory cortex (S1), has not been defined. We therefore examined functional, structural, and immunological alterations in S1 during the early stages of EAE, when pain behaviors first appear. We also assessed the effects of the antidepressant phenelzine (PLZ) on S1 alterations and nociceptive (mechanical) sensitivity in early EAE. PLZ has been shown to restore central nervous system (CNS) tissue concentrations of GABA and the monoamines (5-HT, NA) in EAE. We hypothesized that PLZ treatment would also normalize nociceptive sensitivity in EAE by restoring the balance of excitation and inhibition (E-I) in the CNS. METHODS: We used in vivo flavoprotein autofluorescence imaging (FAI) to assess neural ensemble responses in S1 to vibrotactile stimulation of the limbs in early EAE. We also used immunohistochemistry (IHC), and Golgi-Cox staining, to examine synaptic changes and neuroinflammation in S1. Mechanical sensitivity was assessed at the clinical onset of EAE with Von Frey hairs. RESULTS: Mice with early EAE exhibited significantly intensified and expanded FAI responses in S1 compared to controls. IHC revealed increased vesicular glutamate transporter (VGLUT1) expression and disrupted parvalbumin+ (PV+) interneuron connectivity in S1 of EAE mice. Furthermore, peri-neuronal nets (PNNs) were significantly reduced in S1. Morphological analysis of excitatory neurons in S1 revealed increased dendritic spine densities. Iba-1+ cortical microglia were significantly elevated early in the disease. Chronic PLZ treatment was found to normalize mechanical thresholds in EAE. PLZ also normalized S1 FAI responses, neuronal morphologies, and cortical microglia numbers and attenuated VGLUT1 reactivity-but did not significantly attenuate the loss of PNNs. CONCLUSIONS: These findings implicate a pro-excitatory shift in the E-I balance of the somatosensory CNS, arising early in the pathogenesis EAE and leading to large-scale functional and structural plasticity in S1. They also suggest a novel antinociceptive effect of PLZ treatment.


Assuntos
Encefalomielite Autoimune Experimental/complicações , Neuralgia/etiologia , Neuralgia/patologia , Limiar da Dor/fisiologia , Córtex Somatossensorial/patologia , Sinapses/metabolismo , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/imunologia , Feminino , Adjuvante de Freund/toxicidade , Hiperalgesia/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Glicoproteína Mielina-Oligodendrócito/imunologia , Glicoproteína Mielina-Oligodendrócito/toxicidade , Neuralgia/tratamento farmacológico , Neurônios/citologia , Neurônios/metabolismo , Neurônios/ultraestrutura , Medição da Dor/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Parvalbuminas/metabolismo , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/toxicidade , Fenelzina/farmacologia , Fenelzina/uso terapêutico , Lectinas de Plantas/metabolismo , Receptores de N-Acetilglucosamina/metabolismo , Córtex Somatossensorial/efeitos dos fármacos , Córtex Somatossensorial/ultraestrutura , Sinapses/patologia , Sinapses/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA