Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Sci Rep ; 14(1): 1563, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238383

RESUMO

In brown adipose tissue (BAT), short-term cold exposure induces the activating transcription factor 4 (ATF4), and its downstream target fibroblast growth factor 21 (FGF21). Induction of ATF4 in BAT in response to mitochondrial stress is required for thermoregulation, partially by increasing FGF21 expression. In the present study, we tested the hypothesis that Atf4 and Fgf21 induction in BAT are both required for BAT thermogenesis under physiological stress by generating mice selectively lacking either Atf4 (ATF4 BKO) or Fgf21 (FGF21 BKO) in UCP1-expressing adipocytes. After 3 days of cold exposure, core body temperature was significantly reduced in ad-libitum-fed ATF4 BKO mice, which correlated with Fgf21 downregulation in brown and beige adipocytes, and impaired browning of white adipose tissue. Conversely, despite having reduced browning, FGF21 BKO mice had preserved core body temperature after cold exposure. Mechanistically, ATF4, but not FGF21, regulates amino acid import and metabolism in response to cold, likely contributing to BAT thermogenic capacity under ad libitum-fed conditions. Importantly, under fasting conditions, both ATF4 and FGF21 were required for thermogenesis in cold-exposed mice. Thus, ATF4 regulates BAT thermogenesis under fed conditions likely in a FGF21-independent manner, in part via increased amino acid uptake and metabolism.


Assuntos
Fator 4 Ativador da Transcrição , Fatores de Crescimento de Fibroblastos , Termogênese , Animais , Camundongos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Aminoácidos/metabolismo , Temperatura Baixa , Camundongos Endogâmicos C57BL , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
2.
Mol Metab ; 72: 101718, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37030441

RESUMO

OBJECTIVE: Glucagon-like peptide-1 receptor (GLP-1R) agonists (GLP-1RA) and fibroblast growth factor-21 (FGF21) confer similar metabolic benefits. GLP-1RA induce FGF21, leading us to investigate mechanisms engaged by the GLP-1RA liraglutide to increase FGF21 levels and the metabolic relevance of liraglutide-induced FGF21. METHODS: Circulating FGF21 levels were measured in fasted male C57BL/6J, neuronal GLP-1R knockout, ß-cell GLP-1R knockout, and liver peroxisome proliferator-activated receptor alpha knockout mice treated acutely with liraglutide. To test the metabolic relevance of liver FGF21 in response to liraglutide, chow-fed control and liver Fgf21 knockout (LivFgf21-/-) mice were treated with vehicle or liraglutide in metabolic chambers. Body weight and composition, food intake, and energy expenditure were measured. Since FGF21 reduces carbohydrate intake, we measured body weight in mice fed matched diets with low- (LC) or high-carbohydrate (HC) content and in mice fed a high-fat, high-sugar (HFHS) diet. This was done in control and LivFgf21-/- mice and in mice lacking neuronal ß-klotho (Klb) expression to disrupt brain FGF21 signaling. RESULTS: Liraglutide increases FGF21 levels independently of decreased food intake via neuronal GLP-1R activation. Lack of liver Fgf21 expression confers resistance to liraglutide-induced weight loss due to attenuated reduction of food intake in chow-fed mice. Liraglutide-induced weight loss was impaired in LivFgf21-/- mice when fed HC and HFHS diets but not when fed a LC diet. Loss of neuronal Klb also attenuated liraglutide-induced weight loss in mice fed HC or HFHS diets. CONCLUSIONS: Our findings support a novel role for a GLP-1R-FGF21 axis in regulating body weight in a dietary carbohydrate-dependent manner.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Liraglutida , Animais , Masculino , Camundongos , Carboidratos , Dieta Hiperlipídica , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Liraglutida/farmacologia , Camundongos Endogâmicos C57BL , Redução de Peso
3.
bioRxiv ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36945390

RESUMO

In brown adipose tissue (BAT), short-term cold exposure induces the activating transcription factor 4 (ATF4), and its downstream target fibroblast growth factor 21 (FGF21). Induction of ATF4 in BAT in response to mitochondrial stress is required for thermoregulation, partially via upregulation of FGF21. In the present study, we tested the hypothesis that Atf4 and Fgf21 induction in BAT are both required for BAT thermogenesis by generating mice selectively lacking either Atf4 ( ATF4 BKO ) or Fgf21 (FGF21 BKO) in UCP1-expressing adipocytes. After 3 days of cold exposure, core body temperature was significantly reduced in ad-libitum -fed ATF4 BKO mice, which correlated with Fgf21 downregulation in brown and beige adipocytes, and impaired browning of white adipose tissue (WAT). Conversely, despite having reduced browning, FGF21 BKO mice had preserved core body temperature after cold exposure. Mechanistically, ATF4, but not FGF21, regulates amino acid import and metabolism in response to cold, likely contributing to BAT thermogenic capacity under ad libitum -fed conditions. Importantly, under fasting conditions, both ATF4 and FGF21 were required for thermogenesis in cold-exposed mice. Thus, ATF4 regulates BAT thermogenesis by activating amino acid metabolism in BAT in a FGF21-independent manner.

4.
bioRxiv ; 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36711605

RESUMO

Glucagon-like peptide-1 receptor (GLP-1R) agonists and fibroblast growth factor 21 (FGF21) confer similar metabolic benefits. Studies report that GLP-1RA induce FGF21. Here, we investigated the mechanisms engaged by the GLP-1R agonist liraglutide to increase FGF21 levels and the metabolic relevance of liraglutide-induced FGF21. We show that liraglutide increases FGF21 levels via neuronal GLP-1R activation. We also demonstrate that lack of liver Fgf21 expression confers partial resistance to liraglutide-induced weight loss. Since FGF21 reduces carbohydrate intake, we tested whether the contribution of FGF21 to liraglutide-induced weight loss is dependent on dietary carbohydrate content. In control and liver Fgf21 knockout (Liv Fgf21 -/- ) mice fed calorically matched diets with low- (LC) or high-carbohydrate (HC) content, we found that only HC-fed Liv Fgf21 -/- mice were resistant to liraglutide-induced weight loss. Similarly, liraglutide-induced weight loss was partially impaired in Liv Fgf21 -/- mice fed a high-fat, high-sugar (HFHS) diet. Lastly, we show that loss of neuronal ß-klotho expression also diminishes liraglutide-induced weight loss in mice fed a HC or HFHS diet, indicating that FGF21 mediates liraglutide-induced weight loss via neuronal FGF21 action. Our findings support a novel role for a GLP-1R-FGF21 axis in regulating body weight in the presence of high dietary carbohydrate content.

6.
Diabetes ; 71(12): 2572-2583, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36170659

RESUMO

Mitochondria play a vital role in white adipose tissue (WAT) homeostasis including adipogenesis, fatty acid synthesis, and lipolysis. We recently reported that the mitochondrial fusion protein optic atrophy 1 (OPA1) is required for induction of fatty acid oxidation and thermogenic activation in brown adipocytes. In the current study we investigated the role of OPA1 in WAT function in vivo. We generated mice with constitutive or inducible knockout of OPA1 selectively in adipocytes. Studies were conducted under baseline conditions, at thermoneutrality, following high-fat feeding or during cold exposure. OPA1 deficiency reduced mitochondrial respiratory capacity in white adipocytes, impaired lipolytic signaling, repressed expression of de novo lipogenesis and triglyceride synthesis pathways, and promoted adipose tissue senescence and inflammation. Reduced WAT mass was associated with hepatic triglycerides accumulation and glucose intolerance. Moreover, mice deficient for OPA1 in adipocytes had impaired adaptive thermogenesis and reduced cold-induced browning of subcutaneous WAT and were completely resistant to diet-induced obesity. In conclusion, OPA1 expression and function in adipocytes are essential for adipose tissue expansion, lipid biosynthesis, and fatty acid mobilization of WAT and brown adipocytes and for thermogenic activation of brown and beige adipocytes.


Assuntos
Tecido Adiposo Branco , Metabolismo dos Lipídeos , Animais , Camundongos , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/genética , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/metabolismo , Termogênese/genética , Triglicerídeos/metabolismo , Temperatura Baixa
7.
Cell Rep ; 40(8): 111239, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36001982

RESUMO

Fibroblast growth factor 21 (FGF21) is a liver-derived endocrine hormone that functions to regulate energy homeostasis and macronutrient intake. Recently, FGF21 was reported to be produced and secreted from hypothalamic tanycytes, to regulate peripheral lipid metabolism; however, rigorous investigation of FGF21 expression in the brain has yet to be accomplished. Using a mouse model that drives CRE recombinase in FGF21-expressing cells, we demonstrate that FGF21 is not expressed in the hypothalamus, but instead is produced from the retrosplenial cortex (RSC), an essential brain region for spatial learning and memory. Furthermore, we find that central FGF21 produced in the RSC enhances spatial memory but does not regulate energy homeostasis or sugar intake. Finally, our data demonstrate that administration of FGF21 prolongs the duration of long-term potentiation in the hippocampus and enhances activation of hippocampal neurons. Thus, endogenous and pharmacological FGF21 appear to function in the hippocampus to enhance spatial memory.


Assuntos
Fatores de Crescimento de Fibroblastos , Fígado , Animais , Metabolismo Energético/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Homeostase/fisiologia , Fígado/metabolismo , Camundongos , Camundongos Knockout
8.
Mol Metab ; 64: 101564, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35944896

RESUMO

OBJECTIVE: Fibroblast growth factor 21 (FGF21) is a peripherally-derived endocrine hormone that acts on the central nervous system (CNS) to regulate whole body energy homeostasis. Pharmacological administration of FGF21 promotes weight loss in obese animal models and human subjects with obesity. However, the central targets mediating these effects are incompletely defined. METHODS: To explore the mechanism for FGF21's effects to lower body weight, we pharmacologically administer FGF21 to genetic animal models lacking the obligate FGF21 co-receptor, ß-klotho (KLB), in either glutamatergic (Vglut2-Cre) or GABAergic (Vgat-Cre) neurons. In addition, we abolish FGF21 signaling to leptin receptor (LepR-Cre) positive cells. Finally, we examine the synergistic effects of FGF21 and leptin to lower body weight and explore the importance of physiological leptin levels in FGF21-mediated regulation of body weight. RESULTS: Here we show that FGF21 signaling to glutamatergic neurons is required for FGF21 to modulate energy expenditure and promote weight loss. In addition, we demonstrate that FGF21 signals to leptin receptor-expressing cells to regulate body weight, and that central leptin signaling is required for FGF21 to fully stimulate body weight loss during obesity. Interestingly, co-administration of FGF21 and leptin synergistically leads to robust weight loss. CONCLUSIONS: These data reveal an important endocrine crosstalk between liver- and adipose-derived signals which integrate in the CNS to modulate energy homeostasis and body weight regulation.


Assuntos
Fatores de Crescimento de Fibroblastos , Leptina , Receptores para Leptina , Animais , Peso Corporal , Fatores de Crescimento de Fibroblastos/farmacologia , Humanos , Leptina/metabolismo , Leptina/farmacologia , Neurônios/metabolismo , Obesidade/metabolismo , Receptores para Leptina/genética , Redução de Peso
9.
Cells ; 11(9)2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35563871

RESUMO

The ability to maintain energy homeostasis is necessary for survival. Recently, an emerging role for ependymogial cells, which line the third ventricle in the hypothalamus in the regulation of energy homeostasis, has been appreciated. These cells are called tanycytes and are physically at the interface of brain communication with peripheral organs and have been proposed to mediate the transport of circulating hormones from the third ventricle into the parenchyma of the hypothalamus. Despite the important role tanycytes have been proposed to play in mediating communication from the periphery to the brain, we understand very little about the ontology and function of these cells due to their limited abundance and lack of ability to genetically target this cell population reliably. To overcome these hurdles, we integrated existing hypothalamic single cell RNA sequencing data, focusing on tanycytes, to allow for more in-depth characterization of tanycytic cell types and their putative functions. Overall, we expect this dataset to serve as a resource for the research community.


Assuntos
Células Ependimogliais , Transcriptoma , Animais , Células Ependimogliais/metabolismo , Homeostase , Hipotálamo/metabolismo , Camundongos , Transcriptoma/genética
10.
Cell Metab ; 34(2): 317-328.e6, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108517

RESUMO

Excessive alcohol consumption is a major health and social issue in our society. Pharmacologic administration of the endocrine hormone fibroblast growth factor 21 (FGF21) suppresses alcohol consumption through actions in the brain in rodents, and genome-wide association studies have identified single nucleotide polymorphisms in genes involved with FGF21 signaling as being associated with increased alcohol consumption in humans. However, the neural circuit(s) through which FGF21 signals to suppress alcohol consumption are unknown, as are its effects on alcohol consumption in higher organisms. Here, we demonstrate that administration of an FGF21 analog to alcohol-preferring non-human primates reduces alcohol intake by 50%. Further, we reveal that FGF21 suppresses alcohol consumption through a projection-specific subpopulation of KLB-expressing neurons in the basolateral amygdala. Our results illustrate how FGF21 suppresses alcohol consumption through a specific population of neurons in the brain and demonstrate its therapeutic potential in non-human primate models of excessive alcohol consumption.


Assuntos
Fatores de Crescimento de Fibroblastos , Estudo de Associação Genômica Ampla , Consumo de Bebidas Alcoólicas , Animais , Sistema Endócrino/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo
11.
Mol Metab ; 55: 101405, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34844020

RESUMO

OBJECTIVE: Uncoupling protein 1 (UCP1) is a mitochondrial protein critical for adaptive thermogenesis in adipose tissues, and it is typically believed to be restricted to thermogenic adipose tissues. UCP1-Cre transgenic mice are utilized in numerous studies to provide "brown adipose-specific" conditional gene targeting. Here, we examined the distribution of Cre and UCP1 throughout the body in UCP1-Cre reporter mice. METHODS: UCP1-Cre mice crossed to Ai14-tdTomato and Ai9-tdTomato reporter mice were used to explore the tissue distribution of Cre recombinase and Ucp1 mRNA in various tissues. UCP1-Cre mice were independently infected with either a Cre-dependent PHP.eB-tdTomato virus or a Cre-dependent AAV-tdTomato virus to determine whether and where UCP1 is actively expressed in the adult central nervous system. In situ analysis of the deposited single cell RNA sequencing data was used to evaluate Ucp1 expression in the hypothalamus. RESULTS: As expected, Ucp1 expression was detected in both brown and inguinal adipose tissues. Ucp1 expression was also detected in the kidney, adrenal glands, thymus, and hypothalamus. Consistent with detectable Ucp1 expression, tdTomato expression was also observed in brown adipose tissue, inguinal white adipose tissue, kidney, adrenal glands, and hypothalamus of both male and female UCP1-Cre; Ai14-tdTomato and UCP1-Cre; Ai9-tdTomato mice by fluorescent imaging and qPCR. Critically, expression of tdTomato, and thus UCP1, within the central nervous system was observed in regions of the brain critical for the regulation of energy homeostasis, including the ventromedial hypothalamus (VMH). CONCLUSIONS: TdTomato expression in UCP1-Cre; tdTomato mice is not restricted to thermogenic adipose tissues. TdTomato was also expressed in the kidneys, adrenal glands, and throughout the brain, including brain regions and cell types that are critical for multiple aspects of central regulation of energy homeostasis. Collectively, these data have important implications for the utility of UCP1-Cre mice as genetic tools to investigate gene function specifically in brown adipose tissue.


Assuntos
Marcação de Genes/métodos , Termogênese/fisiologia , Proteína Desacopladora 1/genética , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Regulação da Temperatura Corporal/genética , Regulação da Temperatura Corporal/fisiologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/fisiologia , Feminino , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , RNA Mensageiro/metabolismo , Proteína Desacopladora 1/metabolismo
12.
Cell Rep ; 37(7): 110003, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34788615

RESUMO

Brown adipose tissue (BAT) thermogenic activity is tightly regulated by cellular redox status, but the underlying molecular mechanisms are incompletely understood. Protein S-nitrosylation, the nitric-oxide-mediated cysteine thiol protein modification, plays important roles in cellular redox regulation. Here we show that diet-induced obesity (DIO) and acute cold exposure elevate BAT protein S-nitrosylation, including UCP1. This thermogenic-induced nitric oxide bioactivity is regulated by S-nitrosoglutathione reductase (GSNOR; alcohol dehydrogenase 5 [ADH5]), a denitrosylase that balances the intracellular nitroso-redox status. Loss of ADH5 in BAT impairs cold-induced UCP1-dependent thermogenesis and worsens obesity-associated metabolic dysfunction. Mechanistically, we demonstrate that Adh5 expression is induced by the transcription factor heat shock factor 1 (HSF1), and administration of an HSF1 activator to BAT of DIO mice increases Adh5 expression and significantly improves UCP1-mediated respiration. Together, these data indicate that ADH5 controls BAT nitroso-redox homeostasis to regulate adipose thermogenesis, which may be therapeutically targeted to improve metabolic health.


Assuntos
Tecido Adiposo Marrom/metabolismo , Álcool Desidrogenase/metabolismo , Óxido Nítrico/metabolismo , Álcool Desidrogenase/fisiologia , Animais , Dieta , Células HEK293 , Homeostase/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Óxido Nítrico/química , Obesidade/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Termogênese/fisiologia , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/fisiologia
14.
Science ; 372(6546): 1085-1091, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34083488

RESUMO

Whereas coding variants often have pleiotropic effects across multiple tissues, noncoding variants are thought to mediate their phenotypic effects by specific tissue and temporal regulation of gene expression. Here, we investigated the genetic and functional architecture of a genomic region within the FTO gene that is strongly associated with obesity risk. We show that multiple variants on a common haplotype modify the regulatory properties of several enhancers targeting IRX3 and IRX5 from megabase distances. We demonstrate that these enhancers affect gene expression in multiple tissues, including adipose and brain, and impart regulatory effects during a restricted temporal window. Our data indicate that the genetic architecture of disease-associated loci may involve extensive pleiotropy, allelic heterogeneity, shared allelic effects across tissues, and temporally restricted effects.


Assuntos
Tecido Adiposo/metabolismo , Encéfalo/metabolismo , Proteínas de Homeodomínio/genética , Obesidade/genética , Fatores de Transcrição/genética , Alelos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Encéfalo/embriologia , Linhagem Celular , Cromatina/química , Cromatina/metabolismo , Desenvolvimento Embrionário , Elementos Facilitadores Genéticos , Comportamento Alimentar , Preferências Alimentares , Regulação da Expressão Gênica , Haplótipos , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Obesidade/fisiopatologia , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/metabolismo
15.
Elife ; 102021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33944779

RESUMO

Adrenergic stimulation of brown adipocytes alters mitochondrial dynamics, including the mitochondrial fusion protein optic atrophy 1 (OPA1). However, direct mechanisms linking OPA1 to brown adipose tissue (BAT) physiology are incompletely understood. We utilized a mouse model of selective OPA1 deletion in BAT (OPA1 BAT KO) to investigate the role of OPA1 in thermogenesis. OPA1 is required for cold-induced activation of thermogenic genes in BAT. Unexpectedly, OPA1 deficiency induced fibroblast growth factor 21 (FGF21) as a BATokine in an activating transcription factor 4 (ATF4)-dependent manner. BAT-derived FGF21 mediates an adaptive response by inducing browning of white adipose tissue, increasing resting metabolic rates, and improving thermoregulation. However, mechanisms independent of FGF21, but dependent on ATF4 induction, promote resistance to diet-induced obesity in OPA1 BAT KO mice. These findings uncover a homeostatic mechanism of BAT-mediated metabolic protection governed in part by an ATF4-FGF21 axis, which is activated independently of BAT thermogenic function.


Assuntos
Tecido Adiposo Marrom/metabolismo , Regulação da Temperatura Corporal/genética , Fatores de Crescimento de Fibroblastos/metabolismo , GTP Fosfo-Hidrolases/genética , Deleção de Genes , Adipócitos Marrons/fisiologia , Tecido Adiposo Branco/fisiologia , Animais , Feminino , Fatores de Crescimento de Fibroblastos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética
16.
Cell Rep ; 35(7): 109128, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34010646

RESUMO

Organismal stressors such as cold exposure require a systemic response to maintain body temperature. Brown adipose tissue (BAT) is a key thermogenic tissue in mammals that protects against hypothermia in response to cold exposure. Defining the complex interplay of multiple organ systems in this response is fundamental to our understanding of adipose tissue thermogenesis. In this study, we identify a role for hepatic insulin signaling via AKT in the adaptive response to cold stress and show that liver AKT is an essential cell-nonautonomous regulator of adipocyte lipolysis and BAT function. Mechanistically, inhibition of forkhead box O1 (FOXO1) by AKT controls BAT thermogenesis by enhancing catecholamine-induced lipolysis in the white adipose tissue (WAT) and increasing circulating fibroblast growth factor 21 (FGF21). Our data identify a role for hepatic insulin signaling via the AKT-FOXO1 axis in regulating WAT lipolysis, promoting BAT thermogenic capacity, and ensuring a proper thermogenic response to acute cold exposure.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Fígado/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Termogênese/genética , Animais , Camundongos
17.
J Clin Invest ; 131(10)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33822771

RESUMO

The protein kinases IKKε and TBK1 are activated in liver and fat in mouse models of obesity. We have previously demonstrated that treatment with the IKKε/TBK1 inhibitor amlexanox produces weight loss and relieves insulin resistance in obese animals and patients. While amlexanox treatment caused a transient reduction in food intake, long-term weight loss was attributable to increased energy expenditure via FGF21-dependent beiging of white adipose tissue (WAT). Amlexanox increased FGF21 synthesis and secretion in several tissues. Interestingly, although hepatic secretion determined circulating levels, it was dispensable for regulating energy expenditure. In contrast, adipocyte-secreted FGF21 may have acted as an autocrine factor that led to adipose tissue browning and weight loss in obese mice. Moreover, increased energy expenditure was an important determinant of improved insulin sensitivity by amlexanox. Conversely, the immediate reductions in fasting blood glucose observed with acute amlexanox treatment were mediated by the suppression of hepatic glucose production via activation of STAT3 by adipocyte-secreted IL-6. These findings demonstrate that amlexanox improved metabolic health via FGF21 action in adipocytes to increase energy expenditure via WAT beiging and that adipocyte-derived IL-6 has an endocrine role in decreasing gluconeogenesis via hepatic STAT3 activation, thereby producing a coordinated improvement in metabolic parameters.


Assuntos
Aminopiridinas/farmacologia , Glicemia/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Gluconeogênese/efeitos dos fármacos , Quinase I-kappa B/metabolismo , Fígado/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Glicemia/genética , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/genética , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Fatores de Crescimento de Fibroblastos/genética , Gluconeogênese/genética , Quinase I-kappa B/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
20.
Mol Metab ; 44: 101138, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33285302

RESUMO

BACKGROUND: The liver is a key regulator of systemic energy homeostasis and can sense and respond to nutrient excess and deficiency through crosstalk with multiple tissues. Regulation of systemic energy homeostasis by the liver is mediated in part through regulation of glucose and lipid metabolism. Dysregulation of either process may result in metabolic dysfunction and contribute to the development of insulin resistance or fatty liver disease. SCOPE OF REVIEW: The liver has recently been recognized as an endocrine organ that secretes hepatokines, which are liver-derived factors that can signal to and communicate with distant tissues. Dysregulation of liver-centered inter-organ pathways may contribute to improper regulation of energy homeostasis and ultimately metabolic dysfunction. Deciphering the mechanisms that regulate hepatokine expression and communication with distant tissues is essential for understanding inter-organ communication and for the development of therapeutic strategies to treat metabolic dysfunction. MAJOR CONCLUSIONS: In this review, we discuss liver-centric regulation of energy homeostasis through hepatokine secretion. We highlight key hepatokines and their roles in metabolic control, examine the molecular mechanisms of each hepatokine, and discuss their potential as therapeutic targets for metabolic disease. We also discuss important areas of future studies that may contribute to understanding hepatokine signaling under healthy and pathophysiological conditions.


Assuntos
Citocinas/metabolismo , Homeostase , Fígado/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Fígado Gorduroso/metabolismo , Glucose/metabolismo , Humanos , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos , Doenças Metabólicas/metabolismo , Nutrientes/metabolismo , Obesidade/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA