Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 7(19)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33962951

RESUMO

Angkor is one of the world's largest premodern settlement complexes (9th to 15th centuries CE), but to date, no comprehensive demographic study has been completed, and key aspects of its population and demographic history remain unknown. Here, we combine lidar, archaeological excavation data, radiocarbon dates, and machine learning algorithms to create maps that model the development of the city and its population growth through time. We conclude that the Greater Angkor Region was home to approximately 700,000 to 900,000 inhabitants at its apogee in the 13th century CE. This granular, diachronic, paleodemographic model of the Angkor complex can be applied to any ancient civilization.

2.
Sci Adv ; 4(10): eaau4029, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30345363

RESUMO

Complex infrastructural networks provide critical services to cities but can be vulnerable to external stresses, including climatic variability. This vulnerability has also challenged past urban settlements, but its role in cases of historic urban demise has not been precisely documented. We transform archeological data from the medieval Cambodian city of Angkor into a numerical model that allows us to quantify topological damage to critical urban infrastructure resulting from climatic variability. Our model reveals unstable behavior in which extensive and cascading damage to infrastructure occurs in response to flooding within Angkor's urban water management system. The likelihood and extent of the cascading failure abruptly grow with the magnitude of flooding relative to normal flows in the system. Our results support the hypothesis that systemic infrastructural vulnerability, coupled with abrupt climatic variation, contributed to the demise of the city. The factors behind Angkor's demise are analogous to challenges faced by modern urban communities struggling with complex critical infrastructure.

3.
Proc Natl Acad Sci U S A ; 110(31): 12595-600, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23847206

RESUMO

Previous archaeological mapping work on the successive medieval capitals of the Khmer Empire located at Angkor, in northwest Cambodia (∼9th to 15th centuries in the Common Era, C.E.), has identified it as the largest settlement complex of the preindustrial world, and yet crucial areas have remained unmapped, in particular the ceremonial centers and their surroundings, where dense forest obscures the traces of the civilization that typically remain in evidence in surface topography. Here we describe the use of airborne laser scanning (lidar) technology to create high-precision digital elevation models of the ground surface beneath the vegetation cover. We identify an entire, previously undocumented, formally planned urban landscape into which the major temples such as Angkor Wat were integrated. Beyond these newly identified urban landscapes, the lidar data reveal anthropogenic changes to the landscape on a vast scale and lend further weight to an emerging consensus that infrastructural complexity, unsustainable modes of subsistence, and climate variation were crucial factors in the decline of the classical Khmer civilization.


Assuntos
Arqueologia/instrumentação , Arqueologia/métodos , Civilização/história , Reforma Urbana/história , Camboja , História do Século XV , História Medieval , Humanos
4.
Proc Natl Acad Sci U S A ; 104(36): 14277-82, 2007 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-17717084

RESUMO

The great medieval settlement of Angkor in Cambodia [9th-16th centuries Common Era (CE)] has for many years been understood as a "hydraulic city," an urban complex defined, sustained, and ultimately overwhelmed by a complex water management network. Since the 1980s that view has been disputed, but the debate has remained unresolved because of insufficient data on the landscape beyond the great temples: the broader context of the monumental remains was only partially understood and had not been adequately mapped. Since the 1990s, French, Australian, and Cambodian teams have sought to address this empirical deficit through archaeological mapping projects by using traditional methods such as ground survey in conjunction with advanced radar remote-sensing applications in partnership with the National Aeronautics and Space Administration (NASA)/Jet Propulsion Laboratory (JPL). Here we present a major outcome of that research: a comprehensive archaeological map of greater Angkor, covering nearly 3,000 km2, prepared by the Greater Angkor Project (GAP). The map reveals a vast, low-density settlement landscape integrated by an elaborate water management network covering>1,000 km2, the most extensive urban complex of the preindustrial world. It is now clear that anthropogenic changes to the landscape were both extensive and substantial enough to have created grave challenges to the long-term viability of the settlement.


Assuntos
Archaea , Sistemas Ecológicos Fechados , Archaea/genética , Evolução Biológica , Camboja , Indústrias , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA