Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 240(1): 114-126, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37434275

RESUMO

Drylands of the southwestern United States are rapidly warming, and rainfall is becoming less frequent and more intense, with major yet poorly understood implications for ecosystem structure and function. Thermography-based estimates of plant temperature can be integrated with air temperature to infer changes in plant physiology and response to climate change. However, very few studies have evaluated plant temperature dynamics at high spatiotemporal resolution in rainfall pulse-driven dryland ecosystems. We address this gap by incorporating high-frequency thermal imaging into a field-based precipitation manipulation experiment in a semi-arid grassland to investigate the impacts of rainfall temporal repackaging. All other factors held constant, we found that fewer/larger precipitation events led to cooler plant temperatures (1.4°C) compared to that of many/smaller precipitation events. Perennials, in particular, were 2.5°C cooler than annuals under the fewest/largest treatment. We show these patterns were driven by: increased and consistent soil moisture availability in the deeper soil layers in the fewest/largest treatment; and deeper roots of perennials providing access to deeper plant available water. Our findings highlight the potential for high spatiotemporal resolution thermography to quantify the differential sensitivity of plant functional groups to soil water availability. Detecting these sensitivities is vital to understanding the ecohydrological implications of hydroclimate change.


Assuntos
Ecossistema , Termografia , Chuva , Plantas , Solo , Água/análise , Mudança Climática
2.
Tree Physiol ; 40(10): 1343-1354, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32597974

RESUMO

Semiarid forests in the southwestern USA are generally restricted to mountain regions where complex terrain adds to the challenge of characterizing stand productivity. Among the heterogeneous features of these ecosystems, topography represents an important control on system-level processes including snow accumulation and melt. This basic relationship between geology and hydrology affects radiation and water balances within the forests, with implications for canopy structure and function across a range of spatial scales. In this study, we quantify the effect of topographic aspect on primary productivity by observing the response of two codominant native tree species to seasonal changes in the timing and magnitude of energy and water inputs throughout a montane headwater catchment in Arizona, USA. On average, soil moisture on north-facing aspects remained higher during the spring and early summer compared with south-facing aspects. Repeated measurements of net carbon assimilation (Anet) showed that Pinus ponderosa C. Lawson was sensitive to this difference, while Pseudotsuga menziesii (Mirb.) Franco was not. Irrespective of aspect, we observed seasonally divergent patterns at the species level where P. ponderosa maintained significantly greater Anet into the fall despite more efficient water use by P. menziesii individuals during that time. As a result, this study at the southern extent of the geographical P. menziesii distribution suggests that this species could increase water-use efficiency as a response to future warming and/or drying, but at lower rates of production relative to the more drought-adapted P. ponderosa. At the sub-landscape scale, opposing aspects served as a mesocosm of current versus anticipated climate conditions. In this way, these results also constrain the potential for changing carbon sequestration patterns from Pinus-dominated landscapes due to forecasted changes in seasonal moisture availability.


Assuntos
Ecossistema , Florestas , Arizona , Estações do Ano , Árvores
3.
Conserv Physiol ; 5(1): cox016, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28852513

RESUMO

Patterns of woody-plant mortality have been linked to global-scale environmental changes, such as extreme drought, heat stress, more frequent and intense fires, and episodic outbreaks of insects and pathogens. Although many studies have focussed on survival and mortality in response to specific physiological stresses, little attention has been paid to the role of genetic heritability of traits and local adaptation in influencing patterns of plant mortality, especially in non-native species. Tamarix spp. is a dominant, non-native riparian tree in western North America that is experiencing dieback in some areas of its range due to episodic herbivory by the recently introduced northern tamarisk leaf beetle (Diorhabda carinulata). We propose that genotype × environment interactions largely underpin current and future patterns of Tamarix mortality. We anticipate that (i) despite its recent introduction, and the potential for significant gene flow, Tamarix in western North America is generally adapted to local environmental conditions across its current range in part due to hybridization of two species; (ii) local adaptation to specific climate, soil and resource availability will yield predictable responses to episodic herbivory; and (iii) the ability to cope with a combination of episodic herbivory and increased aridity associated with climate change will be largely based on functional tradeoffs in resource allocation. This review focusses on the potential heritability of plant carbon allocation patterns in Tamarix, focussing on the relative contribution of acquired carbon to non-structural carbohydrate (NSC) pools versus other sinks as the basis for surviving episodic disturbance. Where high aridity and/or poor edaphic position lead to chronic stress, NSC pools may fall below a minimum threshold because of an imbalance between the supply of carbon and its demand by various sinks. Identifying patterns of local adaptation of traits related to resource allocation will improve forecasting of Tamarix population susceptibility to episodic herbivory.

4.
Ecology ; 89(10): 2900-10, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18959327

RESUMO

In semiarid ecosystems, physiography (landscape setting) may interact with woody-plant and soil microbe communities to constrain seasonal exchanges of material and energy at the ecosystem scale. In an upland and riparian shrubland, we examined the seasonally dynamic linkage between ecosystem CO2 exchange, woody-plant water status and photosynthesis, and soil respiration responses to summer rainfall. At each site, we compared tower-based measurements of net ecosystem CO2 exchange (NEE) with ecophysiological measurements among velvet mesquite (Prosopis velutina Woot.) in three size classes and soil respiration in sub-canopy and inter-canopy micro-sites. Monsoonal rainfall influenced a greater shift in the magnitude of ecosystem CO2 assimilation in the upland shrubland than in the riparian shrubland. Mesquite water status and photosynthetic gas exchange were closely linked to the onset of the North American monsoon in the upland shrubland. In contrast, the presence of shallow alluvial groundwater in the riparian shrubland caused larger size classes of mesquite to be physiologically insensitive to monsoonal rains. In both shrublands, soil respiration was greatest beneath mesquite canopies and was coupled to shallow soil moisture abundance. Physiography, through its constraint on the physiological sensitivity of deeply rooted woody plants, may interact with plant-mediated rates of soil respiration to affect the sensitivity of semiarid-ecosystem carbon exchange in response to episodic rainfall.


Assuntos
Dióxido de Carbono/metabolismo , Prosopis/crescimento & desenvolvimento , Prosopis/metabolismo , Chuva , Solo/análise , Ecossistema , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Estações do Ano
5.
Oecologia ; 141(2): 254-68, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15338414

RESUMO

In the arid and semiarid regions of North America, discrete precipitation pulses are important triggers for biological activity. The timing and magnitude of these pulses may differentially affect the activity of plants and microbes, combining to influence the C balance of desert ecosystems. Here, we evaluate how a "pulse" of water influences physiological activity in plants, soils and ecosystems, and how characteristics, such as precipitation pulse size and frequency are important controllers of biological and physical processes in arid land ecosystems. We show that pulse size regulates C balance by determining the temporal duration of activity for different components of the biota. Microbial respiration responds to very small events, but the relationship between pulse size and duration of activity likely saturates at moderate event sizes. Photosynthetic activity of vascular plants generally increases following relatively larger pulses or a series of small pulses. In this case, the duration of physiological activity is an increasing function of pulse size up to events that are infrequent in these hydroclimatological regions. This differential responsiveness of photosynthesis and respiration results in arid ecosystems acting as immediate C sources to the atmosphere following rainfall, with subsequent periods of C accumulation should pulse size be sufficient to initiate vascular plant activity. Using the average pulse size distributions in the North American deserts, a simple modeling exercise shows that net ecosystem exchange of CO2 is sensitive to changes in the event size distribution representative of wet and dry years. An important regulator of the pulse response is initial soil and canopy conditions and the physical structuring of bare soil and beneath canopy patches on the landscape. Initial condition influences responses to pulses of varying magnitude, while bare soil/beneath canopy patches interact to introduce nonlinearity in the relationship between pulse size and soil water response. Building on this conceptual framework and developing a greater understanding of the complexities of these eco-hydrologic systems may enhance our ability to describe the ecology of desert ecosystems and their sensitivity to global change.


Assuntos
Carbono/fisiologia , Clima Desértico , Ecossistema , Fenômenos Fisiológicos Vegetais , Chuva , Microbiologia do Solo , Dióxido de Carbono/fisiologia , Modelos Biológicos , América do Norte , Fotossíntese/fisiologia , Água/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA