Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Nat Neurosci ; 27(5): 988-999, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499855

RESUMO

A fundamental human cognitive feat is to interpret linguistic instructions in order to perform novel tasks without explicit task experience. Yet, the neural computations that might be used to accomplish this remain poorly understood. We use advances in natural language processing to create a neural model of generalization based on linguistic instructions. Models are trained on a set of common psychophysical tasks, and receive instructions embedded by a pretrained language model. Our best models can perform a previously unseen task with an average performance of 83% correct based solely on linguistic instructions (that is, zero-shot learning). We found that language scaffolds sensorimotor representations such that activity for interrelated tasks shares a common geometry with the semantic representations of instructions, allowing language to cue the proper composition of practiced skills in unseen settings. We show how this model generates a linguistic description of a novel task it has identified using only motor feedback, which can subsequently guide a partner model to perform the task. Our models offer several experimentally testable predictions outlining how linguistic information must be represented to facilitate flexible and general cognition in the human brain.


Assuntos
Neurônios , Humanos , Neurônios/fisiologia , Modelos Neurológicos , Idioma , Generalização Psicológica/fisiologia , Processamento de Linguagem Natural , Aprendizagem/fisiologia , Redes Neurais de Computação , Encéfalo/fisiologia , Rede Nervosa/fisiologia
3.
Commun Chem ; 6(1): 247, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052884

RESUMO

Connecting chemical properties to various wine characteristics is of great interest to the science of olfaction as well as the wine industry. We explored whether Bordeaux wine chemical identities and vintages (harvest year) can be inferred from a common and affordable chemical analysis, namely, a combination of gas chromatography (GC) and electron ionization mass spectrometry. Using 12 vintages (within the 1990-2007 range) from 7 estates of the Bordeaux region, we report that, remarkably, nonlinear dimensionality reduction techniques applied to raw gas chromatograms recover the geography of the Bordeaux region. Using machine learning, we found that we can not only recover the estate perfectly from gas chromatograms, but also the vintage with up to 50% accuracy. Interestingly, we observed that the entire chromatogram is informative with respect to geographic location and age, thus suggesting that the chemical identity of a wine is not defined by just a few molecules but is distributed over a large chemical spectrum. This study demonstrates the remarkable potential of GC analysis to explore fundamental questions about the origin and age of wine.

4.
bioRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014166

RESUMO

To thrive in complex environments, animals and artificial agents must learn to act adaptively to maximize fitness and rewards. Such adaptive behavior can be learned through reinforcement learning1, a class of algorithms that has been successful at training artificial agents2-6 and at characterizing the firing of dopamine neurons in the midbrain7-9. In classical reinforcement learning, agents discount future rewards exponentially according to a single time scale, controlled by the discount factor. Here, we explore the presence of multiple timescales in biological reinforcement learning. We first show that reinforcement agents learning at a multitude of timescales possess distinct computational benefits. Next, we report that dopamine neurons in mice performing two behavioral tasks encode reward prediction error with a diversity of discount time constants. Our model explains the heterogeneity of temporal discounting in both cue-evoked transient responses and slower timescale fluctuations known as dopamine ramps. Crucially, the measured discount factor of individual neurons is correlated across the two tasks suggesting that it is a cell-specific property. Together, our results provide a new paradigm to understand functional heterogeneity in dopamine neurons, a mechanistic basis for the empirical observation that humans and animals use non-exponential discounts in many situations10-14, and open new avenues for the design of more efficient reinforcement learning algorithms.

5.
Nat Commun ; 14(1): 1597, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949048

RESUMO

Neuroscience has long been an essential driver of progress in artificial intelligence (AI). We propose that to accelerate progress in AI, we must invest in fundamental research in NeuroAI. A core component of this is the embodied Turing test, which challenges AI animal models to interact with the sensorimotor world at skill levels akin to their living counterparts. The embodied Turing test shifts the focus from those capabilities like game playing and language that are especially well-developed or uniquely human to those capabilities - inherited from over 500 million years of evolution - that are shared with all animals. Building models that can pass the embodied Turing test will provide a roadmap for the next generation of AI.


Assuntos
Inteligência Artificial , Neurociências , Animais , Humanos
6.
Neuron ; 110(22): 3661-3666, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36240770

RESUMO

We propose centralized brain observatories for large-scale recordings of neural activity in mice and non-human primates coupled with cloud-based data analysis and sharing. Such observatories will advance reproducible systems neuroscience and democratize access to the most advanced tools and data.


Assuntos
Encéfalo , Neurociências , Animais , Camundongos
7.
Sci Adv ; 8(22): eabg5244, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35648863

RESUMO

How neuronal variability affects sensory coding is a central question in systems neuroscience, often with complex and model-dependent answers. Many studies explore population models with a parametric structure for response tuning and variability, preventing an analysis of how synaptic circuitry establishes neural codes. We study stimulus coding in networks of spiking neuron models with spatially ordered excitatory and inhibitory connectivity. The wiring structure is capable of producing rich population-wide shared neuronal variability that agrees with many features of recorded cortical activity. While both the spatial scales of feedforward and recurrent projections strongly affect noise correlations, only recurrent projections, and in particular inhibitory projections, can introduce correlations that limit the stimulus information available to a decoder. Using a spatial neural field model, we relate the recurrent circuit conditions for information limiting noise correlations to how recurrent excitation and inhibition can form spatiotemporal patterns of population-wide activity.

8.
Nat Neurosci ; 25(2): 201-212, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35132235

RESUMO

Classical models of perceptual decision-making assume that subjects use a single, consistent strategy to form decisions, or that decision-making strategies evolve slowly over time. Here we present new analyses suggesting that this common view is incorrect. We analyzed data from mouse and human decision-making experiments and found that choice behavior relies on an interplay among multiple interleaved strategies. These strategies, characterized by states in a hidden Markov model, persist for tens to hundreds of trials before switching, and often switch multiple times within a session. The identified decision-making strategies were highly consistent across mice and comprised a single 'engaged' state, in which decisions relied heavily on the sensory stimulus, and several biased states in which errors frequently occurred. These results provide a powerful alternate explanation for 'lapses' often observed in rodent behavioral experiments, and suggest that standard measures of performance mask the presence of major changes in strategy across trials.


Assuntos
Comportamento de Escolha , Tomada de Decisões , Animais , Humanos , Camundongos
9.
Nat Neurosci ; 24(4): 565-571, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33707754

RESUMO

Learning, especially rapid learning, is critical for survival. However, learning is hard; a large number of synaptic weights must be set based on noisy, often ambiguous, sensory information. In such a high-noise regime, keeping track of probability distributions over weights is the optimal strategy. Here we hypothesize that synapses take that strategy; in essence, when they estimate weights, they include error bars. They then use that uncertainty to adjust their learning rates, with more uncertain weights having higher learning rates. We also make a second, independent, hypothesis: synapses communicate their uncertainty by linking it to variability in postsynaptic potential size, with more uncertainty leading to more variability. These two hypotheses cast synaptic plasticity as a problem of Bayesian inference, and thus provide a normative view of learning. They generalize known learning rules, offer an explanation for the large variability in the size of postsynaptic potentials and make falsifiable experimental predictions.


Assuntos
Encéfalo/fisiologia , Aprendizagem/fisiologia , Modelos Neurológicos , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Algoritmos , Animais , Teorema de Bayes , Humanos
10.
PLoS Comput Biol ; 17(2): e1008138, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33577553

RESUMO

Skilled behavior often displays signatures of Bayesian inference. In order for the brain to implement the required computations, neuronal activity must carry accurate information about the uncertainty of sensory inputs. Two major approaches have been proposed to study neuronal representations of uncertainty. The first one, the Bayesian decoding approach, aims primarily at decoding the posterior probability distribution of the stimulus from population activity using Bayes' rule, and indirectly yields uncertainty estimates as a by-product. The second one, which we call the correlational approach, searches for specific features of neuronal activity (such as tuning-curve width and maximum firing-rate) which correlate with uncertainty. To compare these two approaches, we derived a new normative model of sound source localization by Interaural Time Difference (ITD), that reproduces a wealth of behavioral and neural observations. We found that several features of neuronal activity correlated with uncertainty on average, but none provided an accurate estimate of uncertainty on a trial-by-trial basis, indicating that the correlational approach may not reliably identify which aspects of neuronal responses represent uncertainty. In contrast, the Bayesian decoding approach reveals that the activity pattern of the entire population was required to reconstruct the trial-to-trial posterior distribution with Bayes' rule. These results suggest that uncertainty is unlikely to be represented in a single feature of neuronal activity, and highlight the importance of using a Bayesian decoding approach when exploring the neural basis of uncertainty.


Assuntos
Modelos Neurológicos , Rede Nervosa/fisiologia , Localização de Som/fisiologia , Incerteza , Animais , Vias Auditivas/fisiologia , Teorema de Bayes , Comportamento Animal/fisiologia , Biologia Computacional , Humanos , Colículos Inferiores/fisiologia , Neurônios/fisiologia , Estrigiformes/fisiologia , Colículos Superiores/fisiologia
11.
Nat Commun ; 11(1): 2757, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488065

RESUMO

In standard models of perceptual decision-making, noisy sensory evidence is considered to be the primary source of choice errors and the accumulation of evidence needed to overcome this noise gives rise to speed-accuracy tradeoffs. Here, we investigated how the history of recent choices and their outcomes interact with these processes using a combination of theory and experiment. We found that the speed and accuracy of performance of rats on olfactory decision tasks could be best explained by a Bayesian model that combines reinforcement-based learning with accumulation of uncertain sensory evidence. This model predicted the specific pattern of trial history effects that were found in the data. The results suggest that learning is a critical factor contributing to speed-accuracy tradeoffs in decision-making, and that task history effects are not simply biases but rather the signatures of an optimal learning strategy.


Assuntos
Comportamento de Escolha/fisiologia , Tomada de Decisões/fisiologia , Aprendizagem/fisiologia , Memória/fisiologia , Animais , Teorema de Bayes , Comportamento Animal/fisiologia , Biologia Computacional , Modelos Teóricos , Desempenho Psicomotor/fisiologia , Ratos , Tempo de Reação , Reforço Psicológico , Incerteza
12.
Proc Natl Acad Sci U S A ; 116(49): 24872-24880, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31732671

RESUMO

Diffusion decision models (DDMs) are immensely successful models for decision making under uncertainty and time pressure. In the context of perceptual decision making, these models typically start with two input units, organized in a neuron-antineuron pair. In contrast, in the brain, sensory inputs are encoded through the activity of large neuronal populations. Moreover, while DDMs are wired by hand, the nervous system must learn the weights of the network through trial and error. There is currently no normative theory of learning in DDMs and therefore no theory of how decision makers could learn to make optimal decisions in this context. Here, we derive such a rule for learning a near-optimal linear combination of DDM inputs based on trial-by-trial feedback. The rule is Bayesian in the sense that it learns not only the mean of the weights but also the uncertainty around this mean in the form of a covariance matrix. In this rule, the rate of learning is proportional (respectively, inversely proportional) to confidence for incorrect (respectively, correct) decisions. Furthermore, we show that, in volatile environments, the rule predicts a bias toward repeating the same choice after correct decisions, with a bias strength that is modulated by the previous choice's difficulty. Finally, we extend our learning rule to cases for which one of the choices is more likely a priori, which provides insights into how such biases modulate the mechanisms leading to optimal decisions in diffusion models.


Assuntos
Tomada de Decisões/fisiologia , Aprendizagem/fisiologia , Modelos Psicológicos , Autoimagem , Teorema de Bayes , Encéfalo/fisiologia , Retroalimentação , Humanos , Neurônios/fisiologia , Incerteza
13.
Neuron ; 104(5): 1010-1021.e10, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31607423

RESUMO

Perceptual decisions are often based on multiple sensory inputs whose reliabilities rapidly vary over time, yet little is known about how the brain integrates these inputs to optimize behavior. The optimal solution requires that neurons simply add their sensory inputs across time and modalities, as long as these inputs are encoded with an invariant linear probabilistic population code (ilPPC). While this theoretical possibility has been raised before, it has never been tested experimentally. Here, we report that neural activities in the lateral intraparietal area (LIP) of macaques performing a vestibular-visual multisensory decision-making task are indeed consistent with the ilPPC theory. More specifically, we found that LIP accumulates momentary evidence proportional to the visual speed and the absolute value of vestibular acceleration, two variables that are encoded with close approximations to ilPPCs in sensory areas. Together, these results provide a remarkably simple and biologically plausible solution to near-optimal multisensory decision making.


Assuntos
Tomada de Decisões/fisiologia , Modelos Neurológicos , Percepção de Movimento/fisiologia , Lobo Parietal/fisiologia , Animais , Macaca mulatta , Neurônios
14.
Nat Neurosci ; 22(9): 1503-1511, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31384015

RESUMO

Everyday decisions frequently require choosing among multiple alternatives. Yet the optimal policy for such decisions is unknown. Here we derive the normative policy for general multi-alternative decisions. This strategy requires evidence accumulation to nonlinear, time-dependent bounds that trigger choices. A geometric symmetry in those boundaries allows the optimal strategy to be implemented by a simple neural circuit involving normalization with fixed decision bounds and an urgency signal. The model captures several key features of the response of decision-making neurons as well as the increase in reaction time as a function of the number of alternatives, known as Hick's law. In addition, we show that in the presence of divisive normalization and internal variability, our model can account for several so-called 'irrational' behaviors, such as the similarity effect as well as the violation of both the independence of irrelevant alternatives principle and the regularity principle.


Assuntos
Encéfalo/fisiologia , Tomada de Decisões/fisiologia , Modelos Neurológicos , Modelos Psicológicos , Animais , Humanos , Recompensa
15.
PLoS Comput Biol ; 14(9): e1006371, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30248091

RESUMO

Studies of neuron-behaviour correlation and causal manipulation have long been used separately to understand the neural basis of perception. Yet these approaches sometimes lead to drastically conflicting conclusions about the functional role of brain areas. Theories that focus only on choice-related neuronal activity cannot reconcile those findings without additional experiments involving large-scale recordings to measure interneuronal correlations. By expanding current theories of neural coding and incorporating results from inactivation experiments, we demonstrate here that it is possible to infer decoding weights of different brain areas at a coarse scale without precise knowledge of the correlation structure. We apply this technique to neural data collected from two different cortical areas in macaque monkeys trained to perform a heading discrimination task. We identify two opposing decoding schemes, each consistent with data depending on the nature of correlated noise. Our theory makes specific testable predictions to distinguish these scenarios experimentally without requiring measurement of the underlying noise correlations.


Assuntos
Encéfalo/fisiologia , Percepção de Movimento/fisiologia , Neurônios/fisiologia , Algoritmos , Animais , Comportamento de Escolha , Simulação por Computador , Macaca mulatta , Modelos Neurológicos , Movimento (Física) , Distribuição Normal
16.
PLoS Comput Biol ; 13(4): e1005497, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28419098

RESUMO

Sensory neurons give highly variable responses to stimulation, which can limit the amount of stimulus information available to downstream circuits. Much work has investigated the factors that affect the amount of information encoded in these population responses, leading to insights about the role of covariability among neurons, tuning curve shape, etc. However, the informativeness of neural responses is not the only relevant feature of population codes; of potentially equal importance is how robustly that information propagates to downstream structures. For instance, to quantify the retina's performance, one must consider not only the informativeness of the optic nerve responses, but also the amount of information that survives the spike-generating nonlinearity and noise corruption in the next stage of processing, the lateral geniculate nucleus. Our study identifies the set of covariance structures for the upstream cells that optimize the ability of information to propagate through noisy, nonlinear circuits. Within this optimal family are covariances with "differential correlations", which are known to reduce the information encoded in neural population activities. Thus, covariance structures that maximize information in neural population codes, and those that maximize the ability of this information to propagate, can be very different. Moreover, redundancy is neither necessary nor sufficient to make population codes robust against corruption by noise: redundant codes can be very fragile, and synergistic codes can-in some cases-optimize robustness against noise.


Assuntos
Modelos Neurológicos , Rede Nervosa/fisiologia , Células Receptoras Sensoriais/fisiologia , Biologia Computacional , Simulação por Computador
17.
Neuron ; 93(5): 1198-1212.e5, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28238548

RESUMO

Sensory information is translated into ensemble representations by various populations of projection neurons in brain circuits. The dynamics of ensemble representations formed by distinct channels of output neurons in diverse behavioral contexts remains largely unknown. We studied the two output neuron layers in the olfactory bulb (OB), mitral and tufted cells, using chronic two-photon calcium imaging in awake mice. Both output populations displayed similar odor response profiles. During passive sensory experience, both populations showed reorganization of ensemble odor representations yet stable pattern separation across days. Intriguingly, during active odor discrimination learning, mitral but not tufted cells exhibited improved pattern separation, although both populations showed reorganization of ensemble representations. An olfactory circuitry model suggests that cortical feedback on OB interneurons can trigger both forms of plasticity. In conclusion, we show that different OB output layers display unique context-dependent long-term ensemble plasticity, allowing parallel transfer of non-redundant sensory information to downstream centers. VIDEO ABSTRACT.


Assuntos
Plasticidade Neuronal/fisiologia , Odorantes , Bulbo Olfatório/citologia , Condutos Olfatórios/fisiologia , Olfato/fisiologia , Animais , Interneurônios/fisiologia , Camundongos , Vigília
18.
Nat Neurosci ; 20(1): 98-106, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27918530

RESUMO

The olfactory system faces a hard problem: on the basis of noisy information from olfactory receptor neurons (the neurons that transduce chemicals to neural activity), it must figure out which odors are present in the world. Odors almost never occur in isolation, and different odors excite overlapping populations of olfactory receptor neurons, so the central challenge of the olfactory system is to demix its input. Because of noise and the large number of possible odors, demixing is fundamentally a probabilistic inference task. We propose that the early olfactory system uses approximate Bayesian inference to solve it. The computations involve a dynamical loop between the olfactory bulb and the piriform cortex, with cortex explaining incoming activity from the olfactory receptor neurons in terms of a mixture of odors. The model is compatible with known anatomy and physiology, including pattern decorrelation, and it performs better than other models at demixing odors.


Assuntos
Odorantes , Bulbo Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Córtex Piriforme/fisiologia , Animais , Teorema de Bayes , Camundongos , Neurônios/fisiologia
19.
F1000Res ; 6: 1752, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29333238

RESUMO

In this method article, we show how to estimate of the number of retinal ganglion cells (RGC), and the number of lateral genicular nucleus (LGN) and primary visual cortex (V1) neurons involved in visual orientation discrimination tasks. We reported the results of this calculation in Kanitscheider et al. (2015), where we were interested in comparing the number of neurons in the visual periphery versus visual cortex for a specific experiment. This calculation allows estimation of the information content at different stages of the visual pathway, which can be used to assess the efficiency of the computations performed. As these numbers are generally not readily available but may be useful to other researchers, we explain here in detail how we obtained them. The calculation is straightforward, and simply requires combining anatomical and physiological information about the macaque visual pathway. Similar information could be used to repeat the calculation for other species or modalities.

20.
Nature ; 539(7628): 159-161, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27830818
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA