Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Interv Neuroradiol ; : 15910199241230364, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321875

RESUMO

BACKGROUND: Mechanical thrombectomy via direct aspiration is a rapid treatment for acute ischemic stroke. This method often results in the partial ingestion of the clot or "corking" of the catheter tip. Cyclic aspiration may take advantage of the mechanical properties of the clot, resulting in greater clot ingestion and overall procedure success. METHODS: An in vitro analysis was performed comparing static and cyclic (plunger technique) aspiration. Embolus analogs were used to create occlusions in a mock circulatory flow loop, and one aspiration attempt (first pass effect) using either a static or plunger technique was performed. The percent ingestion of each embolus analog was recorded for each trial. RESULTS: Static aspiration for 0% and 50% hematocrit embolus analogs resulted in ingestions of 12.8 ± 4.6% and 15.1 ± 10.0%, respectively, while plunger technique (cyclic) aspiration resulted in 15.8 ± 7.3% and 34.4 ± 19.5% ingestion. Complete ingestion was observed only with 50% hematocrit analogs, occurring in 30% of plunger and 10% of static cases. Statistical differences were determined between the two aspiration techniques for the 50% hematocrit samples, with the plunger technique yielding significantly more ingestion. In addition, the plunger technique was shown to maintain a negative vacuum pressure throughout the duration of cyclic plunging. CONCLUSIONS: The plunger technique for manual cyclic aspiration resulted in higher rates of complete ingestion and greater average % ingestions when compared to static aspiration. Increased clot ingestion can result in a higher rate of complete reperfusion during the first aspiration attempt, maximizing the number of patients with good clinical outcomes.

2.
J Am Soc Mass Spectrom ; 34(9): 1879-1889, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37439461

RESUMO

Venous thromboembolism (VTE) and its complications affect over 900,000 people in the U.S. annually, with a third of cases resulting in fatality. Despite such a high incidence rate, venous thrombosis research has not led to significant changes in clinical treatments, with standard anti-coagulant therapy (heparin followed by a vitamin K antagonist) being used since the 1950s. Mechanical thrombectomy is an alternative strategy for treating venous thrombosis; however, clinical guidelines for patient selection have not been well-established or accepted. The effectiveness of both treatments is impacted by the heterogeneity of the thrombus, including the mechanical properties of its cellular components and its molecular makeup. A full understanding of the complex interplay between disease initiation and progression, biochemical molecular changes, tissue function, and mechanical properties calls for a multiplex and multiscale approach. In this work, we establish a protocol for using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging to characterize spatial heterogeneity of biomolecules in lab-made blood clots and ex vivo murine thrombi. In this work, we compared (1) tissue preservation and cryosectioning methods, (2) various matrixes, 9-aminoacridine hydrochloride monohydrate (9AA), 2,5-dihydroxybenzoic acid (DHB), and alpha-cyano-4-hydroxycinnamic acid matrix (CHCA), (3) plasma-rich versus red-blood-cell rich lab-made blood clots, and (4) lab-made blood clots versus ex vivo murine thrombi. This project is the first step in our work to combine mass spectrometry imaging with biomechanical testing of blood clots to improve our understanding of VTE.


Assuntos
Tromboembolia Venosa , Trombose Venosa , Camundongos , Humanos , Animais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Heparina , Lipídeos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA