Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Front Immunol ; 14: 1200003, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426670

RESUMO

Despite the advancements in therapy for B cell malignancies and the increase in long-term survival of patients, almost half of them lead to relapse. Combinations of chemotherapy and monoclonal antibodies such as anti-CD20 leads to mixed outcomes. Recent developments in immune cell-based therapies are showing many encouraging results. γδ T cells, with their potential of functional plasticity and their anti-tumoral properties, emerged as good candidates for cancer immunotherapies. The representation and the diversity of γδ T cells in tissues and in the blood, in physiological conditions or in B-cell malignancies such as B cell lymphoma, chronic lymphoblastic leukemia or multiple myeloma, provides the possibility to manipulate them with immunotherapeutic approaches for these patients. In this review, we summarized several strategies based on the activation and tumor-targeting of γδ T cells, optimization of expansion protocols, and development of gene-modified γδ T cells, using combinations of antibodies and therapeutic drugs and adoptive cell therapy with autologous or allogenic γδ T cells following potential genetic modifications.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos de Linfócitos T gama-delta , Humanos , Imunoterapia , Anticorpos Monoclonais/uso terapêutico , Linfócitos T
2.
iScience ; 26(6): 106897, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37332613

RESUMO

Monocyte-derived macrophages help maintain tissue homeostasis and defend the organism against pathogens. In tumors, recent studies have uncovered complex macrophage populations, including tumor-associated macrophages, which support tumorigenesis through cancer hallmarks such as immunosuppression, angiogenesis, or matrix remodeling. In the case of chronic lymphocytic leukemia, these macrophages are known as nurse-like cells (NLCs) and they protect leukemic cells from spontaneous apoptosis, contributing to their chemoresistance. We propose an agent-based model of monocyte differentiation into NLCs upon contact with leukemic B cells in vitro. We performed patient-specific model optimization using cultures of peripheral blood mononuclear cells from patients. Using our model, we were able to reproduce the temporal survival dynamics of cancer cells in a patient-specific manner and to identify patient groups related to distinct macrophage phenotypes. Our results show a potentially important role of phagocytosis in the polarization process of NLCs and in promoting cancer cells' enhanced survival.

3.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163420

RESUMO

Monocytes and their tissue counterpart macrophages (MP) constitute the front line of the immune system. Indeed, they are able to rapidly and efficiently detect both external and internal danger signals, thereby activating the immune system to eradicate the disturbing biological, chemical, or physical agents. They are also in charge of the control of the immune response and account for the repair of the damaged tissues, eventually restoring tissue homeostasis. The balance between these dual activities must be thoroughly controlled in space and time. Any sustained unbalanced response of MP leads to pathological disorders, such as chronic inflammation, or favors cancer development and progression. In this review, we take advantage of our expertise in chronic inflammation, especially in rheumatoid arthritis, and in cancer, to highlight the pivotal role of MP in the physiopathology of these disorders and to emphasize the repolarization of unbalanced MP as a promising therapeutic strategy to control these diseases.


Assuntos
Artrite Reumatoide/imunologia , Macrófagos/imunologia , Neoplasias/imunologia , Animais , Polaridade Celular , Humanos , Macrófagos/patologia , Neoplasias/patologia
4.
Cell Mol Immunol ; 18(8): 1861-1870, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34183807

RESUMO

The high cytotoxic activity of Vγ9Vδ2 T lymphocytes against tumor cells makes them useful candidates in anticancer therapies. However, the molecular mechanism of their activation by phosphoantigens (PAgs) is not completely known. Many studies have depicted the mechanism of Vγ9Vδ2 T-cell activation by PAg-sensed accessory cells, such as immune presenting cells or tumor cells. In this study, we demonstrated that pure resting Vγ9Vδ2 T lymphocytes can self-activate through exogenous PAgs, involving their TCR and the butyrophilins BTN3A1 and BTN2A1. This is the first time that these three molecules, concurrently expressed at the plasma membrane of Vγ9Vδ2 T cells, have been shown to be involved together on the same and unique T cell during PAg activation. Moreover, the use of probucol to stimulate the inhibition of this self-activation prompted us to propose that ABCA-1 could be implicated in the transfer of exogenous PAgs inside Vγ9Vδ2 T cells before activating them through membrane clusters formed by γ9TCR, BTN3A1 and BTN2A1. The self-activation of Vγ9Vδ2 T cells, which leads to self-killing, can therefore participate in the failure of γδ T cell-based therapies with exogenous PAgs and should be taken into account.


Assuntos
Receptores de Antígenos de Linfócitos T gama-delta , Linfócitos T , Antígenos CD/metabolismo , Butirofilinas/metabolismo , Ativação Linfocitária , Subpopulações de Linfócitos T
5.
Cancers (Basel) ; 13(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572057

RESUMO

The immune system is a smart way to fight cancer, with its precise targeting of cancer cells sparing healthy cells [...].

6.
Cancers (Basel) ; 13(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418996

RESUMO

Interactions between malignant cells and neighboring stromal and immune cells profoundly shape cancer progression. New forms of therapies targeting these cells have revolutionized the treatment of cancer. However, in order to specifically address each population, it was essential to identify and understand their individual roles in interaction between malignant cells, and the formation of the tumor microenvironment (TME). In this review, we focus on the myeloid cell compartment, a prominent, and heterogeneous group populating TME, which can initially exert an anti-tumoral effect, but with time actively participate in disease progression. Macrophages, dendritic cells, neutrophils, myeloid-derived suppressor cells, mast cells, eosinophils, and basophils act alone or in concert to shape tumor cells resistance through cellular interaction and/or release of soluble factors favoring survival, proliferation, and migration of tumor cells, but also immune-escape and therapy resistance.

7.
Cancers (Basel) ; 14(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35008174

RESUMO

Tumor-associated macrophages (TAMs) in chronic lymphocytic leukemia (CLL) are also called nurse-like cells (NLC), and confer survival signals through the release of soluble factors and cellular contacts. While in most patient samples the presence of NLC in co-cultures guarantees high viability of leukemic cells in vitro, in some cases this protective effect is absent. These macrophages are characterized by an "M1-like phenotype". We show here that their reprogramming towards an M2-like phenotype (tumor-supportive) with IL-10 leads to an increase in leukemic cell survival. Inflammatory cytokines, such as TNF, are also able to depolarize M2-type protective NLC (decreasing CLL cell viability), an effect which is countered by IL-10 or blocking antibodies. Interestingly, both IL-10 and TNF are implied in the pathophysiology of CLL and their elevated level is associated with bad prognosis. We propose that the molecular balance between these two cytokines in CLL niches plays an important role in the maintenance of the protective phenotype of NLCs, and therefore in the survival of CLL cells.

8.
Cancers (Basel) ; 12(12)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297362

RESUMO

The tumour microenvironment is the surrounding of a tumour, including blood vessels, fibroblasts, signaling molecules, the extracellular matrix and immune cells, especially neutrophils and monocyte-derived macrophages. In a tumour setting, macrophages encompass a spectrum between a tumour-suppressive (M1) or tumour-promoting (M2) state. The biology of macrophages found in tumours (Tumour Associated Macrophages) remains unclear, but understanding their impact on tumour progression is highly important. In this paper, we perform a comprehensive analysis of a macrophage polarization network, following two lines of enquiry: (i) we reconstruct the macrophage polarization network based on literature, extending it to include important stimuli in a tumour setting, and (ii) we build a dynamical model able to reproduce macrophage polarization in the presence of different stimuli, including the contact with cancer cells. Our simulations recapitulate the documented macrophage phenotypes and their dependencies on specific receptors and transcription factors, while also unravelling the formation of a special type of tumour associated macrophages in an in vitro model of chronic lymphocytic leukaemia. This model constitutes the first step towards elucidating the cross-talk between immune and cancer cells inside tumours, with the ultimate goal of identifying new therapeutic targets that could control the formation of tumour associated macrophages in patients.

9.
Front Immunol ; 11: 1396, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733462

RESUMO

Vγ9Vδ2 T cells are known to be efficient anti-tumor effectors activated through phosphoantigens (PAg) that are naturally expressed by tumor cells or induced by amino bisphosphonates treatment. This PAg-activation which is TCR and butyrophilin BTN3A dependent can be modulated by NKG2D ligands, immune checkpoint ligands, adhesion molecules, and costimulatory molecules. This could explain the immune-resistance observed in certain clinical trials based on Vγ9Vδ2 T cells therapies. In NSCLC, encouraging responses were obtained with zoledronate administrations for 50% of patients. According to the in vivo results, we showed that the in vitro Vγ9Vδ2 T cell reactivity depends on the NSCLC cell line considered. If the PAg-pretreated KRAS mutated A549 is highly recognized and killed by Vγ9Vδ2 T cells, the EGFR mutated PC9 remains resistant to these killers despite a pre-treatment either with zoledronate or with exogenous BrHPP. The immune resistance of PC9 was shown not to be due to immune checkpoint ligands able to counterbalance NKG2D ligands or adhesion molecules such as ICAM-1 highly expressed by PC9. RHOB has been shown to be involved in the Vγ9Vδ2 TCR signaling against these NSCLC cell lines, in this study we therefore focused on its intracellular behavior. In comparison to a uniform distribution of RHOB in endosomes and at the plasma membrane in A549, the presence of large endosomal clusters of RHOB was visualized by a split-GFP system, suggesting that RHOB rerouting in the PC9 tumor cell could impair the reactivity of the immune response.


Assuntos
Antígenos de Neoplasias/imunologia , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Proteína rhoB de Ligação ao GTP/metabolismo , Antígenos de Neoplasias/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Endossomos/imunologia , Endossomos/metabolismo , Humanos , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Fosforilação
10.
Int J Mol Sci ; 20(19)2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547627

RESUMO

The tumor bulk is composed of a highly heterogeneous population of cancer cells, as well as a large variety of resident and infiltrating host cells, extracellular matrix proteins, and secreted proteins, collectively known as the tumor microenvironment (TME). The TME is essential for driving tumor development by promoting cancer cell survival, migration, metastasis, chemoresistance, and the ability to evade the immune system responses. Therapeutically targeting tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), regulatory T-cells (T-regs), and mesenchymal stromal/stem cells (MSCs) is likely to have an impact in cancer treatment. In this review, we focus on describing the normal physiological functions of each of these cell types and their behavior in the cancer setting. Relying on the specific surface markers and secreted molecules in this context, we review the potential targeting of these cells inducing their depletion, reprogramming, or differentiation, or inhibiting their pro-tumor functions or recruitment. Different approaches were developed for this targeting, namely, immunotherapies, vaccines, small interfering RNA, or small molecules.


Assuntos
Imunoterapia , Neoplasias , Microambiente Tumoral/imunologia , Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/patologia , Diferenciação Celular/imunologia , Humanos , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/patologia , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia
11.
Front Immunol ; 10: 1943, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31475004

RESUMO

Follicular lymphoma (FL) is the second most frequent subtype of B non-Hodgkin's lymphomas (NHL) for which the treatment is based on the use of anti-CD20 mAbs. NK cells play a crucial role in their mechanism of action and the number of these cells mediating antibody-dependent cell cycotoxicity (ADCC) in the peripheral blood of FL patients predict the outcome. However, their presence in FL biopsies, their activation and their role have been poorly investigated. Moreover, in vitro studies have not deciphered the exact signaling cascades triggered by NK cells in presence of anti-CD20 mAbs on both effector and target cells in a relevant FL model. We performed in silico analyses and ex vivo functional assays to determine the presence and the activation status of NK cells in FL biopsies. We modelized ADCC phenomenon by developing a co-culture model composed by 3D-cultured FL cells and NK cells. Thus, we investigated the biological effect of anti-CD20 mAbs by fluorescent microscopy and the phosphorylation status of survival pathways by cell bar coding phosphoflow in target cells. In parallel, we measured the status of activation of downstream FcγRIIIa signaling pathways in effector cells and their activation (CD69, perforin, granzyme B, IFNγ) by flow cytometry. We determined by in vivo experiments the effects of anti-CD20 mAbs in presence of NK cells in SCID-Beige engrafted FL mice. Here, we show that functional NK cells infiltrate FL biopsies, and that their presence tends to correlate with the survival of FL patients. Using our 3D co-culture model, we show that rituximab and GA101 are able to promote degranulation, CD69 expression, IFNγ production and activate FcγRIIIa signaling cascade in NK cells, and inhibit survival pathways and induce apoptosis in FL cells. The effect of GA101 seems to be more pronounced as observed in vivo in a xenograft FL model. This study strongly supports the role of NK cells in FL and highlights the application of the 3D co-culture model for in vitro validation.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Antígenos CD20/imunologia , Células Matadoras Naturais/imunologia , Linfoma Folicular/tratamento farmacológico , Rituximab/uso terapêutico , Animais , Citotoxicidade Celular Dependente de Anticorpos/genética , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antígenos CD20/genética , Antígenos CD20/metabolismo , Antineoplásicos Imunológicos/uso terapêutico , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Técnicas de Cocultura , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Células Matadoras Naturais/metabolismo , Linfoma Folicular/genética , Linfoma Folicular/imunologia , Camundongos SCID , Trastuzumab/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
12.
Proc Natl Acad Sci U S A ; 116(24): 11906-11915, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31118283

RESUMO

γδ T lymphocytes represent ∼1% of human peripheral blood mononuclear cells and even more cells in most tissues of vertebrates. Although they have important anticancer functions, most current single-cell RNA sequencing (scRNA-seq) studies do not identify γδ T lymphocytes because their transcriptomes at the single-cell level are unknown. Here we show that high-resolution clustering of large scRNA-seq datasets and a combination of gene signatures allow the specific detection of human γδ T lymphocytes and identification of their T cell receptor (TCR)Vδ1 and TCRVδ2 subsets in large datasets from complex cell mixtures. In t-distributed stochastic neighbor embedding plots from blood and tumor samples, the few γδ T lymphocytes appear collectively embedded between cytotoxic CD8 T and NK cells. Their TCRVδ1 and TCRVδ2 subsets form close yet distinct subclusters, respectively neighboring NK and CD8 T cells because of expression of shared and distinct cytotoxic maturation genes. Similar pseudotime maturation trajectories of TCRVδ1 and TCRVδ2 γδ T lymphocytes were discovered, unveiling in both subsets an unattended pool of terminally differentiated effector memory cells with preserved proliferative capacity, a finding confirmed by in vitro proliferation assays. Overall, the single-cell transcriptomes of thousands of individual γδ T lymphocytes from different CMV+ and CMV- donors reflect cytotoxic maturation stages driven by the immunological history of donors. This landmark study establishes the rationale for identification, subtyping, and deep characterization of human γδ T lymphocytes in further scRNA-seq studies of complex tissues in physiological and disease conditions.


Assuntos
Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Subpopulações de Linfócitos T/imunologia , Adulto , Sequência de Bases , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células/fisiologia , Células Cultivadas , Humanos , Memória Imunológica/imunologia , Células Matadoras Naturais/imunologia , Leucócitos Mononucleares/imunologia , Análise de Sequência de RNA/métodos , Transcriptoma/imunologia
13.
Oncoimmunology ; 8(3): 1554175, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30723586

RESUMO

Follicular lymphoma (FL) is a common non Hodgkin's lymphoma subtype in which immune escape mechanisms are implicated in resistance to chemo-immunotherapy. Although molecular studies point to qualitative and quantitative deregulation of immune checkpoints, in depth cellular analysis of FL immune escape is lacking. Here, by functional assays and in silico analyses we show that a subset of FL patients displays a 'high' immune escape phenotype. These FL cases are characterized by abundant infiltration of PD1+ CD16+ TCRVγ9Vδ2 γδ T lymphocytes. In a 3D co-culture assay (MALC), γδ T cells mediate both direct and indirect (ADCC in the presence of anti-CD20 mAbs) cytolytic activity against FL cell aggregates. Importantly, PD-1, which is expressed by most FL-infiltrating γδ T lymphocytes with ADCC capacity, impairs these functions. In conclusion, we identify a PD1-regulated γδ T cell cytolytic immune component in FL. Our data provide a treatment rational by PD-1 blockade aimed at boosting γδ T cell anti-tumor functions in FL.

14.
Front Immunol ; 9: 2506, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30416507

RESUMO

Interleukin-33 (IL-33), considered as an alarmin released upon tissue stress or damage, is a member of the IL-1 family and binds the ST2 receptor. First described as a potent initiator of type 2 immune responses through the activation of T helper 2 (TH2) cells and mast cells, IL-33 is now also known as an effective stimulator of TH1 immune cells, natural killer (NK) cells, iNKT cells, and CD8 T lymphocytes. Moreover, IL-33 was shown to play an important role in several cancers due to its pro and anti-tumorigenic functions. Currently, IL-33 is a possible inducer and prognostic marker of cancer development with a direct effect on tumor cells promoting tumorigenesis, proliferation, survival, and metastasis. IL-33 also promotes tumor growth and metastasis by remodeling the tumor microenvironment (TME) and inducing angiogenesis. IL-33 favors tumor progression through the immune system by inducing M2 macrophage polarization and tumor infiltration, and upon activation of immunosuppressive cells such as myeloid-derived suppressor cells (MDSC) or regulatory T cells. The anti-tumor functions of IL-33 also depend on infiltrated immune cells displaying TH1 responses. This review therefore summarizes the dual role of this cytokine in cancer and suggests that new proposals for IL-33-based cancer immunotherapies should be considered with caution.


Assuntos
Carcinogênese/imunologia , Citocinas/imunologia , Interleucina-33/imunologia , Neoplasias/imunologia , Animais , Humanos , Imunoterapia/métodos , Neoplasias/terapia , Yin-Yang
15.
Oncotarget ; 8(32): 52225-52236, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28881725

RESUMO

In the tumoral micro-environment (TME) of chronic lymphocytic leukemia (CLL), nurse-like cells (NLC) are tumor-associated macrophages which play a critical role in the survival and chemoresistance of tumoral cells. This pro-survival activity is known to involve soluble factors, but few data are available on the relative role of cells cross-talk. Here, we used a transcriptome-based approach to systematically investigate the expression of various receptor/ligand pairs at the surface of NLC/CLL cells. Their relative contribution to CLL survival was assessed both by fluorescent microscopy to identify cellular interactions and by the use of functional tests to measure the impact of uncoupling these pairs with blocking monoclonal antibodies. We found for the first time that lymphocyte function-associated antigen 3 (LFA-3), expressed in CLL at significantly higher levels than in healthy donor B-cells, and CD2 expressed on NLC, were both key for the specific pro-survival signals delivered by NLC. Moreover, we found that NLC/CLL interactions induced the shedding of soluble LFA-3. Importantly, in an exploratory cohort of 60 CLL patients receiving frontline immunochemotherapy, increased levels of soluble LFA-3 were found to correlate with shorter overall survival. Altogether, these data suggest that LFA-3/CD2 interactions promote the survival of CLL cells in the tumor microenvironment.

16.
Eur J Immunol ; 47(12): 2137-2141, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28741710

RESUMO

From several years, the anticancer effects of Vγ9 T lymphocytes make these cells good candidates for cancer immunotherapies. However, the proved efficacy of γδ Τ cell-based cancer immunotherapies in some clinical trials was minimized due to the inherent toxicity of IL-2, which is essential for the combination therapy with Phosphoantigen (PAg). Recently, we showed that IL-33, a γ chain receptor-independent cytokine, was able to induce the in vitro proliferation of PAg-activated Vγ9 T cells, which were fully functional expressing IFN-γ and TNF-α and showing in vitro anti-tumor cytotoxicity. We proposed IL-33 as an alternative to IL-2 for Vγ9 T cell-based cancer immunotherapies, and have therefore evaluated the efficacy of this cytokine in preclinical investigations. This study shows that human Vγ9 T cells are able to proliferate in a mouse model with the combination of PAg and rhIL-33, and that IL-33-expanded Vγ9 T cells can prevent tumor growth in a mouse lymphoma model.


Assuntos
Imunoterapia/métodos , Interleucina-33/farmacologia , Linfoma/tratamento farmacológico , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/transplante , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Interleucina-33/genética , Linfoma/imunologia , Linfoma/metabolismo , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Proteínas Recombinantes/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/imunologia
17.
Eur J Immunol ; 47(6): 954-957, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28597565

RESUMO

Human blood γδ T lymphocytes express TCRVγ9Vδ2 and respond to nonpeptide phosphoantigens (PAgs) by a mysterious mechanism involving the BTN3A1 (CD277) molecule . BTN3A1 is a butyrophilin-like protein related to CD80, PD-L1, and MHC, and is either a presenting or a co-stimulatory molecule for PAgs. Although the precise roles and molecular interactions with the TCRVγ9Vδ2 are currently not determined, it is commonly thought that all TCRVγ9Vδ2 lymphocytes 'see' PAg and BTN3A1 together, presumably in a single molecular recognition event. But whether this recognition event could be reproduced in a simplified model was not addressed in previous studies. In this issue, Starick et al. (Eur. J. Immunol. 2017. 47: 982-992) compared the response of three TCRVγ9Vδ2 pairs of murine and human cell transfectants to PAg and anti-BTN3A1 antibodies using IL-2 release as a readout. The authors found that although the two murine transfectants responded similarly to either stimuli, one murine TCRVγ9Vδ2 transfectant reacted to PAgs but not to anti-BTN3A1 (mAb 20.1). Human transductants behave in a similar fashion, demonstrating that TCRVγ9Vδ2 lymphocytes differentiate PAg and BTN3A1 signals, while species of the transductants unmask this differential sensitivity. Indeed, understanding the puzzling mode of antigen recognition by γδ T lymphocytes will be essential for developing γδ T-cell-based immunotherapies, and the authors of this study now demonstrate that TCRVγ9Vδ2 lymphocytes are able to differentiate the PAg and BTN3A1 stimuli.


Assuntos
Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Animais , Antígenos CD/química , Humanos , Interleucina-2 , Camundongos , Linfócitos T/imunologia
18.
Oncoimmunology ; 6(3): e1284723, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28405516

RESUMO

Most human blood γδ cells are cytolytic TCRVγ9Vδ2+ lymphocytes with antitumor activity. They are currently investigated in several clinical trials of cancer immunotherapy but so far, their tumor infiltration has not been systematically explored across human cancers. Novel algorithms allowing the deconvolution of bulk tumor transcriptomes to find the relative proportions of infiltrating leucocytes, such as CIBERSORT, should be appropriate for this aim but in practice they fail to accurately recognize γδ T lymphocytes. Here, by implementing machine learning from microarray data, we first improved the computational identification of blood-derived TCRVγ9Vδ2+ γδ lymphocytes and then applied this strategy to assess their abundance as tumor infiltrating lymphocytes (γδ TIL) in ∼10,000 cancer biopsies from 50 types of hematological and solid malignancies. We observed considerable inter-individual variation of TCRVγ9Vδ2+γδ TIL abundance both within each type and across the spectrum of cancers tested. We report their prominence in B cell-acute lymphoblastic leukemia (B-ALL), acute promyelocytic leukemia (M3-AML) and chronic myeloid leukemia (CML) as well as in inflammatory breast, prostate, esophagus, pancreas and lung carcinoma. Across all cancers, the abundance of αß TILs and TCRVγ9Vδ2+ γδ TILs did not correlate. αß TIL abundance paralleled the mutational load of tumors and positively correlated with inflammation, infiltration of monocytes, macrophages and dendritic cells (DC), antigen processing and presentation, and cytolytic activity, in line with an association with a favorable outcome. In contrast, the abundance of TCRVγ9Vδ2+ γδ TILs did not correlate with these hallmarks and was variably associated with outcome, suggesting that distinct contexts underlie TCRVγ9Vδ2+ γδ TIL and αß TIL mobilizations in cancer.

19.
Nanomedicine ; 12(8): 2321-2330, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27498187

RESUMO

Human natural killer (NK) cells play a key role in anti-cancer and anti-viral immunity, but their selective amplification in vitro is extremely tedious to achieve and remains one of the most challenging problems to solve for efficient NK cell-based immuno-therapeutic treatments against malignant diseases. Here we report that, when added to ex vivo culture of peripheral blood mononuclear cells from healthy volunteers or from cancer patients with multiple myeloma, poly (phosphorhydrazone) dendrimers capped with amino-bis(methylene phosphonate) end groups enable the efficient proliferation of NK cells with anti-cancer cytotoxicity in vivo. We also show that the amplification of the NK population relies on the preliminary activation of monocytes in the framework of a multistep cross-talk between monocytes and NK cells before the proliferation thereof. Thus poly(phosphorhydrazone) dendrimers represent a novel class of extremely promising drugs to develop NK-cell based anti-cancer therapies.


Assuntos
Dendrímeros/farmacologia , Imunoterapia , Mieloma Múltiplo/terapia , Humanos , Células Matadoras Naturais , Leucócitos Mononucleares , Monócitos
20.
J Immunol ; 196(1): 493-502, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26608919

RESUMO

The availability of specific stimuli to induce the anticancer cytotoxicity of human TCRVγ9-expressing T lymphocytes has allowed the development of γδ T cell-based cancer immunotherapies. However, the stringent dependence of such strategies on the inherently toxic IL-2 has raised safety concerns for patients, justifying a search for alternative methods for inducing γδ T cell stimulation. IL-33 is a γ-chain receptor-independent cytokine of the IL-1 superfamily that is expressed by endothelial cells from a tumor microenvironment and can sustain Th1 and Th2 immune responses. Therefore, we investigated its ability to support the stimulation of human TCRVγ9(+) γδ T cells. In this study, we report that IL-33 efficiently sustained the in vitro activation of Vγ9 T lymphocytes by synthetic phosphoantigens, zoledronate, and a BTN3A1 Ab in the absence of an exogenous supply of IL-2. IL-33 was as potent as IL-2 in allowing the proliferative amplification of Vγ9 T cells isolated from PBMC following activation by the synthetic phosphoantigen bromohydrin pyrophosphate. IL-33 also induced an identical maturation into TNF-α- and IFN-γ-producing Th1 effector memory cells, and IL-33-stimulated cells showed an equivalent cytotoxicity for various tumor cells in vitro. Finally, we found that the bioactivity of IL-33 on the Vγ9 T cell was indirectly mediated through contact with CD4 T cells and IL-2 production by CD4 T cells and Vγ9 T cells themselves. These data posit IL-33 as an alternative to IL-2 for Vγ9 T cell-based cancer immunotherapies.


Assuntos
Interleucina-33/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Células Th1/imunologia , Antígenos CD/imunologia , Butirofilinas , Proliferação de Células , Células Cultivadas , Difosfatos/farmacologia , Difosfonatos/farmacologia , Células Endoteliais/metabolismo , Humanos , Imidazóis/farmacologia , Imunoterapia , Interferon gama/biossíntese , Interleucina-2/imunologia , Interleucina-2/uso terapêutico , Interleucina-33/uso terapêutico , Leucócitos Mononucleares/imunologia , Ativação Linfocitária/imunologia , Fator de Necrose Tumoral alfa/biossíntese , Ácido Zoledrônico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA