Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Science ; 381(6659): 794-799, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37590355

RESUMO

The discovery of small-molecule inhibitors requires suitable binding pockets on protein surfaces. Proteins that lack this feature are considered undruggable and require innovative strategies for therapeutic targeting. KRAS is the most frequently activated oncogene in cancer, and the active state of mutant KRAS is such a recalcitrant target. We designed a natural product-inspired small molecule that remodels the surface of cyclophilin A (CYPA) to create a neomorphic interface with high affinity and selectivity for the active state of KRASG12C (in which glycine-12 is mutated to cysteine). The resulting CYPA:drug:KRASG12C tricomplex inactivated oncogenic signaling and led to tumor regressions in multiple human cancer models. This inhibitory strategy can be used to target additional KRAS mutants and other undruggable cancer drivers. Tricomplex inhibitors that selectively target active KRASG12C or multiple RAS mutants are in clinical trials now (NCT05462717 and NCT05379985).


Assuntos
Produtos Biológicos , Ciclofilina A , Imunofilinas , Chaperonas Moleculares , Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Cisteína/química , Cisteína/genética , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais , Ciclofilina A/química , Ciclofilina A/metabolismo , Imunofilinas/química , Imunofilinas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética
2.
Nature ; 619(7968): 160-166, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37258666

RESUMO

KRAS is one of the most commonly mutated proteins in cancer, and efforts to directly inhibit its function have been continuing for decades. The most successful of these has been the development of covalent allele-specific inhibitors that trap KRAS G12C in its inactive conformation and suppress tumour growth in patients1-7. Whether inactive-state selective inhibition can be used to therapeutically target non-G12C KRAS mutants remains under investigation. Here we report the discovery and characterization of a non-covalent inhibitor that binds preferentially and with high affinity to the inactive state of KRAS while sparing NRAS and HRAS. Although limited to only a few amino acids, the evolutionary divergence in the GTPase domain of RAS isoforms was sufficient to impart orthosteric and allosteric constraints for KRAS selectivity. The inhibitor blocked nucleotide exchange to prevent the activation of wild-type KRAS and a broad range of KRAS mutants, including G12A/C/D/F/V/S, G13C/D, V14I, L19F, Q22K, D33E, Q61H, K117N and A146V/T. Inhibition of downstream signalling and proliferation was restricted to cancer cells harbouring mutant KRAS, and drug treatment suppressed KRAS mutant tumour growth in mice, without having a detrimental effect on animal weight. Our study suggests that most KRAS oncoproteins cycle between an active state and an inactive state in cancer cells and are dependent on nucleotide exchange for activation. Pan-KRAS inhibitors, such as the one described here, have broad therapeutic implications and merit clinical investigation in patients with KRAS-driven cancers.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Transdução de Sinais , Animais , Camundongos , Peso Corporal , Ativação Enzimática , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Nucleotídeos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Especificidade por Substrato
3.
Environ Sci Pollut Res Int ; 30(15): 45046-45066, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36697984

RESUMO

Thyroid disease is one of the most common endocrine problems around the world. Among the numerous factors, exposure to environmental elements such as pesticides is associated with an increase in the incidence of thyroid disorders. The aim of the present study was to investigate the role of organochlorine pesticides (OCPs) in induction of oxidative stress (OS) and development of thyroid tumors. This case-control study was conducted on 61 patients with papillary thyroid carcinoma (PTC), 70 patients with benign thyroid nodules (BTN), and 73 healthy individuals as control. Seven derived OCPs residues measured by gas chromatography (GC), and enzyme activities of acetylcholinesterase (AChE), superoxide dismutase3 (SOD3), catalase (CAT), glutathione peroxidase3 (GPx3) and paraoxonase1 (PON1) and also, non-enzymatic antioxidant including; malondialdehyde (MDA), total antioxidant capacity (TAC), protein carbonyl (PC), and nitric oxide (NO) biomarkers in all participants were investigated. Furthermore, all of the above enzymes were docked against measured OCPs. The results revealed that ß-HCH, γ-HCH, 2,4 DDE, 4,4 DDE, 2,4-DDT, and 4,4-DDT levels along with MDA, NO, and PC levels were elevated, while AChE, SOD3, GPx3, CAT, and PON1 activities and TAC levels were decreased in the PTC and BTN groups compared with the control group. Therefore, OCPs might play a role in the development of thyroid tumors through several mechanisms including generation of OS. Importantly, in silico analysis confirmed the in vivo findings.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , Neoplasias da Glândula Tireoide , Humanos , DDT/análise , Antioxidantes , Estudos de Casos e Controles , Acetilcolinesterase , Praguicidas/análise , Hidrocarbonetos Clorados/análise , Estresse Oxidativo , Câncer Papilífero da Tireoide , Arildialquilfosfatase
4.
Biochem Biophys Res Commun ; 625: 53-59, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35947915

RESUMO

The novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2 or COVID-19) has caused a global pandemic. The SARS-CoV-2 RNA genome is replicated by a conserved "core" replication-transcription complex (RTC) containing an error-prone RNA-dependent RNA polymerase holoenzyme (holo-RdRp, nsp12-nsp7-nsp8) and a RNA proofreading nuclease (nsp14-nsp10). Although structures and functions of SARS-CoV-2 holo-RdRp have been extensively studied and ribonucleotide-analog inhibitors, such as Remdesivir, have been treated for COVID-19 patients, the substrate and nucleotide specificity of SARS-CoV-2 holo-RdRp remain unknown. Here, our biochemical analysis of SARS-CoV-2 holo-RdRp reveals that it has a robust DNA-dependent RNA polymerase activity, in addition to its intrinsic RNA-dependent RNA polymerase activity. Strikingly, SARS-CoV-2 holo-RdRp fully extends RNAs with a low-fidelity even when only ATP and pyrimidine nucleotides, in particular CTP, are provided. This ATP-dependent error-prone ribonucleotide incorporation by SARS-CoV-2 holo-RdRp resists excision by the RNA proofreading nuclease in vitro. Our collective results suggest that a physiological concentration of ATP likely contributes to promoting the error-prone incorporation of ribonucleotides and ribonucleotide-analogs by SARS-CoV-2 holo-RdRp and provide a useful foundation to develop ribonucleotide analogs as an effective therapeutic strategy to combat coronavirus-mediated outbreak.


Assuntos
COVID-19 , SARS-CoV-2 , Trifosfato de Adenosina , Antivirais/química , RNA Polimerases Dirigidas por DNA , Humanos , RNA Viral/química , RNA Viral/genética , RNA Polimerase Dependente de RNA , Ribonucleotídeos , SARS-CoV-2/genética , Proteínas não Estruturais Virais/química
5.
Nat Commun ; 12(1): 2705, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976187

RESUMO

Androgen signaling through the androgen receptor (AR) directs gene expression in both normal and prostate cancer cells. Androgen regulates multiple aspects of the AR life cycle, including its localization and post-translational modification, but understanding how modifications are read and integrated with AR activity has been difficult. Here, we show that ADP-ribosylation regulates AR through a nuclear pathway mediated by Parp7. We show that Parp7 mono-ADP-ribosylates agonist-bound AR, and that ADP-ribosyl-cysteines within the N-terminal domain mediate recruitment of the E3 ligase Dtx3L/Parp9. Molecular recognition of ADP-ribosyl-cysteine is provided by tandem macrodomains in Parp9, and Dtx3L/Parp9 modulates expression of a subset of AR-regulated genes. Parp7, ADP-ribosylation of AR, and AR-Dtx3L/Parp9 complex assembly are inhibited by Olaparib, a compound used clinically to inhibit poly-ADP-ribosyltransferases Parp1/2. Our study reveals the components of an androgen signaling axis that uses a writer and reader of ADP-ribosylation to regulate protein-protein interactions and AR activity.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/genética , Poli(ADP-Ribose) Polimerases/genética , Neoplasias da Próstata/genética , Processamento de Proteína Pós-Traducional , Receptores Androgênicos/genética , ADP-Ribosilação/efeitos dos fármacos , Adenocarcinoma , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Masculino , Metribolona/farmacologia , Proteínas de Neoplasias/metabolismo , Ftalazinas/farmacologia , Piperazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais , Análise de Sobrevida
6.
Protein Expr Purif ; 185: 105894, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33933612

RESUMO

The novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2 or COVID-19) has led to a world-wild pandemic. The replication of SARS-CoV-2 RNA genome involves the core replication-transcription complex (RTC, nsp12-nsp7-nsp8) and the proofreading complex (nsp14-nsp10) that can correct mismatched base pairs during replication. Structures and functions of SARS-CoV-2 RTC have been actively studied, yet little is known about SARS-CoV-2 nsp14-nsp10. Here, we purified, reconstituted, and characterized the SARS-CoV-2 nsp14-nsp10 proofreading nuclease in vitro. We show that SARS-CoV-2 nsp14 is activated by nsp10, functioning as a potent RNase that can hydrolyze RNAs in the context of single- and double-stranded RNA and RNA/DNA hybrid duplex. SARS-CoV-2 nsp14-nsp10 shows a metal-dependent nuclease activity but has different metal selectivity from RTC. While RTC is activated by Ca2+, nsp14-nsp10 is completely inhibited. Importantly, the reconstituted SARS-CoV-2 nsp14-nsp10 efficiently removed the A:A mismatch at the 3'-end of the primer, enabling the stalled RTC to restart RNA replication. Our collective results confirm that SARS-CoV-2 nsp14-nsp10 functions as the RNA proofreading complex in SARS-CoV-2 replication and provide a useful foundation to understand the structure and function of SARS-CoV-2 RNA metabolism.


Assuntos
COVID-19/virologia , Exorribonucleases/metabolismo , RNA Viral/metabolismo , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Cálcio/metabolismo , Ativação Enzimática , Humanos , Hidrólise , Especificidade por Substrato
7.
J Biol Chem ; 296: 100692, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33894202

RESUMO

ADP-ribosylation is a reversible and site-specific post-translational modification that regulates a wide array of cellular signaling pathways. Regulation of ADP-ribosylation is vital for maintaining genomic integrity, and uncontrolled accumulation of poly(ADP-ribosyl)ation triggers a poly(ADP-ribose) (PAR)-dependent release of apoptosis-inducing factor from mitochondria, leading to cell death. ADP-ribosyl-acceptor hydrolase 3 (ARH3) cleaves PAR and mono(ADP-ribosyl)ation at serine following DNA damage. ARH3 is also a metalloenzyme with strong metal selectivity. While coordination of two magnesium ions (MgA and MgB) significantly enhances its catalytic efficiency, calcium binding suppresses its function. However, how the coordination of different metal ions affects its catalysis has not been defined. Here, we report a new crystal structure of ARH3 complexed with its product ADP-ribose and calcium. This structure shows that calcium coordination significantly distorts the binuclear metal center of ARH3, which results in decreased binding affinity to ADP-ribose, and suboptimal substrate alignment, leading to impaired hydrolysis of PAR and mono(ADP-ribosyl)ated serines. Furthermore, combined structural and mutational analysis of the metal-coordinating acidic residues revealed that MgA is crucial for optimal substrate positioning for catalysis, whereas MgB plays a key role in substrate binding. Our collective data provide novel insights into the different roles of these metal ions and the basis of metal selectivity of ARH3 and contribute to understanding the dynamic regulation of cellular ADP-ribosylations during the DNA damage response.


Assuntos
Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Magnésio/metabolismo , Dano ao DNA , Humanos , Hidrólise , Modelos Moleculares , Poli Adenosina Difosfato Ribose/metabolismo , Conformação Proteica , Especificidade por Substrato
8.
Nucleic Acids Res ; 49(1): 306-321, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33330937

RESUMO

The XRCC1-DNA ligase IIIα complex (XL) is critical for DNA single-strand break repair, a key target for PARP inhibitors in cancer cells deficient in homologous recombination. Here, we combined biophysical approaches to gain insights into the shape and conformational flexibility of the XL as well as XRCC1 and DNA ligase IIIα (LigIIIα) alone. Structurally-guided mutational analyses based on the crystal structure of the human BRCT-BRCT heterodimer identified the network of salt bridges that together with the N-terminal extension of the XRCC1 C-terminal BRCT domain constitute the XL molecular interface. Coupling size exclusion chromatography with small angle X-ray scattering and multiangle light scattering (SEC-SAXS-MALS), we determined that the XL is more compact than either XRCC1 or LigIIIα, both of which form transient homodimers and are highly disordered. The reduced disorder and flexibility allowed us to build models of XL particles visualized by negative stain electron microscopy that predict close spatial organization between the LigIIIα catalytic core and both BRCT domains of XRCC1. Together our results identify an atypical BRCT-BRCT interaction as the stable nucleating core of the XL that links the flexible nick sensing and catalytic domains of LigIIIα to other protein partners of the flexible XRCC1 scaffold.


Assuntos
DNA Ligase Dependente de ATP/metabolismo , Reparo do DNA , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo , Cromatografia em Gel , Cristalografia por Raios X , DNA Ligase Dependente de ATP/química , Dimerização , Humanos , Microscopia Eletrônica , Modelos Moleculares , Complexos Multiproteicos , Mutação , Mutação de Sentido Incorreto , Coloração Negativa , Mutação Puntual , Conformação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/química , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética
9.
Postgrad Med J ; 97(1145): 156-163, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32051282

RESUMO

BACKGROUND: Garlic is a species in the onion genus, Allium. Data have shown that garlic has anti-inflammatory activity; however, the findings are inconclusive and inconsistent. We aimed to evaluate the impact of garlic intake on inflammatory mediators through systematic review and meta-analysis of existing data. METHODS: Electronic databases were completely investigated using databases of ISI Web of Science, Medline, Scopus, Cochrane Library and EMBASE until October 2019. A random effects model and the generic reverse variance procedure were used for quantitative data production. Sensitivity analyses and prespecified subgroup were done to evaluate potential heterogeneity. Random effect meta-regression was conducted to investigate the effects of possible confounders on the assessed effect size. RESULTS: Ten trials with one observational study, including 530 participants, met the eligibility criteria. The findings showed reduction in the tumour necrosis factor alpha (TNF-α) (-0.31 pg/mL, 95% CI -1.07 to 0.46) and C reactive protein (CRP) levels (-0.20 mg/L, 95% CI -1.4 to 1.05) following supplementation with garlic, although it had no marked impact on the interleukin 6 (IL-6) level (0.37 pg/mL, 95% CI -0.58 to 1.33). In the subgroup analysis, we found that garlic supplementation significantly decreased TNF-α, highly sensitive CRP and IL-6 levels in subgroups of >8, >6 and ≥4 weeks of intervention duration, respectively, and dose of garlic consumption between 2 and 2.4 g/day. CONCLUSION: These findings suggested that current evidence may support garlic as an adjunct to pharmacological management of metabolic diseases. PROSPERO REGISTRATION NUMBER: CRD42018108816.


Assuntos
Alho , Mediadores da Inflamação/metabolismo , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
10.
Iran J Basic Med Sci ; 23(6): 810-818, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32695298

RESUMO

OBJECTIVES: Injectable insulin is the most widely used therapy in patients with type 1 diabetes which has several disadvantages. The present study was aimed to evaluate the efficacy of injectable insulin on diabetes mellitus-related complications in comparison to orally encapsulated insulin nanoparticles. MATERIALS AND METHODS: This study involved 42 Wistar rats separated into 5 groups, including control (C), diabetic control (D), diabetic receiving regular insulin (INS), diabetic receiving encapsulated insulin nanoparticle (INP), and diabetic receiving chitosan for two months. Biochemical parameters in serum and urine were measured using spectrophotometric or ELISA methods. mRNA levels of kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) were evaluated using quantitative PCR. RESULTS: There were no significant differences between the two forms of insulin in controlling the glycemic condition (P-value>0.05), but oral INP was more effective in correcting diabetic dyslipidemia in comparison to injectable insulin (P-value<0.05). Urine volume and creatinine excretion were significantly modulated by insulin and oral INP in diabetic groups (P-value<0.05), although the effects of INP on the modulation of execration of urea, acid uric, and albumin was more dramatic. Oral INP caused a significant decrease in urine concentration of KIM-1 and NGAL as well as expression of KIM-1 in renal tissue (P-value<0.05). CONCLUSION: Our results suggested that oral INP is more effective than injectable insulin in modulation of urine and serum diabetic-related parameters.

11.
Biochem Biophys Res Commun ; 527(3): 818-823, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32439163

RESUMO

Poly(ADP-ribosyl)ation (PARylation) regulates DNA damage response, chromatin structure, and cell-fate. Dynamic regulation of cellular PAR levels is crucial for the maintenance of genomic integrity and excessive cellular PAR activates a PAR-dependent cell death pathway. Thus, PAR serves as a cell-death signal; however, it has been debated how the protein-free PAR is generated. Here, we demonstrate that PAR glycohydrolases (PARGs) from mammals to bacteria have a robust endo-glycohydrolase activity, releasing protein-free PAR chains longer than three ADP-ribose units as early reaction products. Released PAR chains are transient and rapidly degraded to monomeric ADP-ribose, which is consistent with a short half-life of PAR during DNA damage responses. Computational simulations using a tri-ADP-ribose further support that PARG can efficiently bind to internal sites of PAR for the endo-glycosidic cleavage. Our collective results suggest PARG as a key player in producing protein-free PAR during DNA damage signaling and establish bacterial PARG as a useful tool to enrich short PAR chains that emerge as important reagents for biomedical research.


Assuntos
Glicosídeo Hidrolases/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Glicosídeo Hidrolases/química , Humanos , Modelos Moleculares , Poli Adenosina Difosfato Ribose/química , Ligação Proteica , Conformação Proteica
12.
Nat Commun ; 10(1): 5654, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827085

RESUMO

Poly(ADP-ribose)ylation (PARylation) by PAR polymerase 1 (PARP1) and PARylation removal by poly(ADP-ribose) glycohydrolase (PARG) critically regulate DNA damage responses; yet, conflicting reports obscure PARG biology and its impact on cancer cell resistance to PARP1 inhibitors. Here, we found that PARG expression is upregulated in many cancers. We employed chemical library screening to identify and optimize methylxanthine derivatives as selective bioavailable PARG inhibitors. Multiple crystal structures reveal how substituent positions on the methylxanthine core dictate binding modes and inducible-complementarity with a PARG-specific tyrosine clasp and arginine switch, supporting inhibitor specificity and a competitive inhibition mechanism. Cell-based assays show selective PARG inhibition and PARP1 hyperPARylation. Moreover, our PARG inhibitor sensitizes cells to radiation-induced DNA damage, suppresses replication fork progression and impedes cancer cell survival. In PARP inhibitor-resistant A172 glioblastoma cells, our PARG inhibitor shows comparable killing to Nedaplatin, providing further proof-of-concept that selectively inhibiting PARG can impair cancer cell survival.


Assuntos
Replicação do DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Neoplasias/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Humanos , Neoplasias/enzimologia , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Poli ADP Ribosilação/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Bibliotecas de Moléculas Pequenas/química
13.
Life Sci ; 221: 65-71, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30738867

RESUMO

AIMS: Oxidative stress induced by diabetes mellitus (DM) is considered as one of the main causes of infertility in diabetic patients. The aim of the present study was to assess the effect of Tempol - as a synthetic antioxidant- on the testis oxidative stress and sperm parameters in type 2 diabetic (T2D) rats. MAIN METHODS: Twenty male Wistar rats were divided into 4 groups. Control groups (C) and diabetic groups (D); the control and diabetic groups received Tempol (100 mg/kg) for one month. Sperm parameters and oxidative stress biomarkers were evaluated in testicular tissue. KEY FINDINGS: The results demonstrated that administration of Tempol in diabetic rats improved sperm motility and viability and decreased the count of abnormal sperms. Also Tempol decreased the fasting blood sugar (FBS) and lipid peroxidation (LPO). In addition, Tempol significantly increased total antioxidant capacity (TAC) levels in testis tissue of T2D rats. Histopathological changes were also improved in the diabetic treated group. SIGNIFICANCE: Taken together, the results indicated that Tempol improved fertility parameters in a diabetic rat through reducing oxidative stress.


Assuntos
Óxidos N-Cíclicos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Testículo/efeitos dos fármacos , Animais , Antioxidantes , Catalase , Óxidos N-Cíclicos/farmacologia , Diabetes Mellitus Experimental/metabolismo , Glutationa Peroxidase , Peroxidação de Lipídeos , Masculino , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar , Contagem de Espermatozoides , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Marcadores de Spin , Superóxido Dismutase , Testículo/metabolismo
14.
J Biol Chem ; 293(32): 12350-12359, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29907568

RESUMO

ADP-ribosyl-acceptor hydrolase 3 (ARH3) plays important roles in regulation of poly(ADP-ribosyl)ation, a reversible post-translational modification, and in maintenance of genomic integrity. ARH3 degrades poly(ADP-ribose) to protect cells from poly(ADP-ribose)-dependent cell death, reverses serine mono(ADP-ribosyl)ation, and hydrolyzes O-acetyl-ADP-ribose, a product of Sirtuin-catalyzed histone deacetylation. ARH3 preferentially hydrolyzes O-linkages attached to the anomeric C1″ of ADP-ribose; however, how ARH3 specifically recognizes and cleaves structurally diverse substrates remains unknown. Here, structures of full-length human ARH3 bound to ADP-ribose and Mg2+, coupled with computational modeling, reveal a dramatic conformational switch from closed to open states that enables specific substrate recognition. The glutamate flap, which blocks substrate entrance to Mg2+ in the unliganded closed state, is ejected from the active site when substrate is bound. This closed-to-open transition significantly widens the substrate-binding channel and precisely positions the scissile 1″-O-linkage for cleavage while securing tightly 2″- and 3″-hydroxyls of ADP-ribose. Our collective data uncover an unprecedented structural plasticity of ARH3 that supports its specificity for the 1″-O-linkage in substrates and Mg2+-dependent catalysis.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Conformação Proteica , Adenosina Difosfato Ribose/química , Sequência de Aminoácidos , Catálise , Domínio Catalítico , Cristalografia por Raios X , Humanos , Hidrólise , Modelos Moleculares , Homologia de Sequência , Especificidade por Substrato
15.
Ren Fail ; 39(1): 211-221, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27846769

RESUMO

Blood and urine biochemistry screening tests are important for initial detection of diabetes, determination of severity of its complications, and monitoring of therapy. We evaluated the effects of aqueous chicory seed extract (CSE), on renal biochemical parameters, histology, and Na+/glucose cotansporters, SGLT1 and SGLT2 expression levels using metformin, and aspirin as controls. Late stage type 2 diabetes (LT2D; FBS, >300 mg/dl) and early stage type 2 diabetes (ET2D; FBS, 140-220 mg/dl) were induced in rats by streptozotocin (STZ group) and a combination of STZ and niacinamide (NIA/STZ group), respectively. A non-diabetic group was included as control. Treatment included daily intraperitoneal injections of either CSE (125 mg/kg b.w.) or metformin (100 mg/kg b.w.) and oral aspirin (120 mg/kg b.w.) for 21 days. At the end, blood and 24 h urine samples were collected; and kidneys were saved at -80 ËšC. CSE reduced urinary α1-microgobulin excretion in ET2D (p = .043), and serum uric acid (p = .045), and glomerular diameter (p < .01) in LT2D. Metformin appeared to be more effective in LT2D with respect to serum uric acid, urea, and BUN (< .05). Both CSE and metformin improved histology. Aspirin improved several blood and urine variables, but appeared to aggravate morphological damages to the kidney tissue. The absolute values of albumin, α1-microglobulin or total protein in urine rather than their creatinine ratios seemed more useful in the detection of early kidney damage; CSE was able to repair the kidney damage and α1-microglobulin was sensitive enough to allow monitoring of the improvements caused by the treatment.


Assuntos
Cichorium intybus/química , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Extratos Vegetais/farmacologia , Animais , Glicemia/metabolismo , Creatinina/metabolismo , Nefropatias Diabéticas/patologia , Glucose/metabolismo , Rim/fisiopatologia , Masculino , Ratos , Ratos Wistar , Sementes/química , Estreptozocina , Ácido Úrico/metabolismo
16.
Diabetol Metab Syndr ; 8: 11, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26877773

RESUMO

BACKGROUND: Inflammation is an early event in the development of diabetes type 2 (T2D). Cichorium intybus L. (chicory) possesses anti-inflammatory action. We compared the anti-inflammatory aspect of aqueous chicory seed extract (CSE) in early and late stage T2D in rats. METHODS: Wistar albino rats were divided into nine final groups (n = 6). Three main groups consisted of non-diabetic (Control), early stage diabetes (ET2D; niacinamide/streptozotocin, i.e., NIA/STZ), and late stage diabetes (LT2D; STZ). Within each main group, a subgroup was treated with CSE (125 mg/kg; i.p.); within each diabetic group (STZ and NIA/STZ) a subgroup received metformin (100 mg/kg; i.p.); another subgroup in STZ group received aspirin (120 mg/kg; oral). After 21 days, fasting blood glucose (FBS), insulin, and TNF-α level were measured in serum; IKKß and NF-κB (p65) mRNA and protein expression were evaluated by real time PCR and Western blotting; p65 DNA binding activity was determined by ELISA, in liver tissue. RESULTS: The mRNA and protein expression levels of IKKß, and P65 genes increased in both stages of T2D (p < 0.01); CSE decreased their expression (p < 0.001, mRNAs; p < 0.05, proteins). The increased DNA-binding capacity of NF-κB (p < 0.0001) in diabetes was lowered by CSE (p < 0.001). The effect of CSE was limited to ET2D requiring insulin. CONCLUSIONS: The anti-inflammatory action of CSE is due to a direct modulation of cytokine expression. The dependency of chicory action on the presence of insulin indicates its usefulness in the early stages of diabetes and for the purpose of preventing and delaying diabetes onset.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA