Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(45): 51275-51290, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36321761

RESUMO

Herein, layer-by-layer MXene/graphene oxide nanosheets wrapped with 3-aminopropyltriethoxy silane (abbreviated as F-GO@MXene) are proposed as an anti-corrosion promoter for waterborne epoxies. The GO@MXene nanohybrid is synthesized by a solvothermal reaction to produce a multi-layered 2D structure without defects. Then, the GO@MXene is modified by silane wrapping under a reflux reaction, in order to achieve chemical stability and to create active sites on the nanohybrid surface for reaction with the polymer matrix of the coating. The organic coating modified with 0.1 wt % F-GO@MXene has revealed superior corrosion protection efficiency than the organic coatings modified with either F-GO or F-MXene nanosheets. The impedance modulus at low frequency for the pure epoxy, epoxy/F-MXene, epoxy/F-GO, and epoxy/F-GO@MXene coatings is 4.17 × 105, 5.5 × 108, 4.46 × 108, and 1.14 × 1010 Ω·cm2 after 30 days of immersion in the corrosive media, respectively. The remarkable anti-corrosion property is assigned to the intense effect of the nanohybrid on the barrier performance, surface roughness, and adhesion strength of the epoxy coating. The complemental analysis based on first-principles density functional theory reveals that the adhesion strength related to the silane functional groups in its complexes follows the order F-GO@MXene > F-MXene > F-GO. The enhanced stabilization predicted on the GO@MXene nanohybrid ultimately stems from the combined role of the electrostatic and van der Waals forces, suggesting an increase in the penetration path of the corrosive media.

2.
Toxicol In Vitro ; 61: 104649, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31518670

RESUMO

Graphene quantum dots (GQDs) represent a new generation of graphene-based nanomaterials with enormous potential for use and development of a variety of biomedical applications. However, up to now little studies have investigated the impact of GQDs on human health in case of exposure. GQDs were synthesized from citric acid as carbon precursor by hydrothermal treatment at 160 °C for 4 h. The synthesized GQDs showed strong blue emission under UV-Irradiation with fluorescence quantum yield of 9.8%. The obtained GQDs were further carbonized, activated and functionalized by nitric acid vapor method. Nitrogen adsorption/desorption isotherms were used to analyze the surface area and porous structures of GQDs. The results revealed that compared to GQDs, the specific surface area of functionalized graphene quantum dots (fGQDs) has been increased from 0.0667 to 2.5747 m2/g and pore structures have been enhanced significantly. The potential cytotoxic effect of GQDs, fGQDs and GO suspensions was evaluated on HFF cell line using MTT assays and flow cytometry method after 24 h incubation. We have for the first time demonstrated that by carbonization, activation and functionalization of GQDs they still showed cytocompatible properties. We observed excellent biocompatibility of GQDs and fGQDs at low concentrations. Moreover, the results suggested that modification of GQDs yields product suspensions with high surface area, enhanced pore volume and loading capacities. Thus, fGQDs represent an attractive candidate for further use in drug delivery systems and bio-imaging application.


Assuntos
Grafite/toxicidade , Pontos Quânticos/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Grafite/química , Humanos , Pontos Quânticos/química , Propriedades de Superfície
3.
Talanta ; 188: 531-539, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30029409

RESUMO

In this study, SnO2 quantum dots-fullerene (SnO2 QDs-C60) nanohybrid as novel sensing material was synthesized by a simple hydrothermal method. The structure and morphology of the synthesized sample were studied by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The prepared hybrid was used as gas sensors for detection of different gasses including 70 ppm H2S, 1% methane, and 1% propane at low temperatures of 100-200 °C. The results indicated that the SnO2 QDs-C60 nanohybrid has high response and high selectivity to 70 ppm H2S, 1% methane, and 1% propane gasses at low temperatures. The highest response (Rair/Rgas) of 66.0 and 5.4-70 ppm H2S and 1% methane gasses at 150 °C and the response of 2.7-1% propane at 200 °C were observed for the prepared nanohybrid gas sensor. Moreover, the prepared sensor showed a good selectivity toward H2S gas. Also, DFT calculations were used for studying the interaction of these gases with SnO2-C60. DFT results showed that H2S has the strongest interaction and the highest effect on band-gap variation which is in a good agreement with experimental results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA