Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Cardiol ; 410: 132227, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38844091

RESUMO

BACKGROUND: Acute ST-elevation myocardial infarction (STEMI) remains a globally significant health challenge in spite of improvement in management strategy. Being aware that mitochondrial dysfunction plays a crucial role in ischaemia-reperfusion injury (IRI) modulation, empirical evidence suggests functional mitochondrial transplantation strikes as a reliable therapeutic approach for patients with acute myocardial infarction. METHODS AND RESULTS: We conducted a prospective, triple-blinded, parallel-group, blocked randomised clinical trial to investigate the therapeutic effects and clinical outcomes of platelet-derived mitochondrial transplantation in 30 patients with acute STEMI, such that the 15 subjects in the control group were given standard of care treatment, whereas the subjects in the intervention group received autologous platelet-derived mitochondria through the intracoronary injection. We observed that within 40 days, the intervention group had a slightly greater improvement in the left ventricular ejection fraction (LVEF) compared to the control group and experienced a significant enhancement in the exercise capacity (p < 0.001). Moreover, major adverse cardiac events (MACE), arrhythmia, fever, and tachycardia were compared between the groups and lack of significant difference marks the safety of mitochondrial transplantation (p > 0.05). Furthermore, the two groups were not significantly distinct as regards the average length of stay for a hospitalisation (p > 0.05). CONCLUSION: We suggest platelet-derived mitochondrial transplantation appears as a beneficial and highly promising therapeutic option for patients of ischaemic heart disease (IHD); however, we are aware that further in-depth studies with larger sample sizes along with longer follow-up periods are necessary for validating the clinical implications of our findings.

2.
Heliyon ; 9(8): e19230, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37654446

RESUMO

Developing and designing efficient wound dressings have gained increasing attention and shown beneficial results in improved wound healing effects. This study was conducted to improve wound healing properties and introduce a novel potential wound dressing. A novel hydrogel based on polyvinylpyrrolidone/poly acrylic acid containing Zinc oxide nanoparticles was prepared as an antibacterial wound dressing and examined in a rat excisional wound model. This hydrogel prepared by free radical polymerization using potassium persulfate (KPS) as an initiator, N, N-methylene bisacrylamide (MBA) as a cross-linker, poly acrylic acid (PAA) as a monomer in the presence of polyvinylpyrrolidone (PVP) and Zinc oxide nanoparticles (ZnO NPs). Analyses such as Scanning Electron Microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), and Thermal gravimetric analysis (TGA) were used to study morphology structure. After choosing the optimal sample, in vivo characterization of excisional wound injury on a rat model was done. The healing rate and histological analysis were calculated and compared among the groups. The therapeutic potential of the PAA-PVP-ZnO-%2 was investigated in a rat model of excisional injury compared to the control group. Results showed that the polyacrylic acid/polyvinylpyrrolidone hydrogel wound dressing containing zinc oxide nanoparticles accelerated wound contraction, had antibacterial effects, and promoted wound healing compared to other groups.

3.
Int Immunopharmacol ; 118: 110106, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37015158

RESUMO

Each year, traumatic brain injury (TBI) causes a high rate of mortality throughout the world and those who survive have lasting disabilities. Given that the brain is a particularly dynamic organ with a high energy consumption rate, the inefficiency of current TBI treatment options highlights the necessity of repairing damaged brain tissue at the cellular and molecular levels, which according to research is aggravated due to ATP deficiency and reactive oxygen species surplus. Taking into account that mitochondria contribute to generating energy and controlling cellular stress, mitochondrial transplantation as a new treatment approach has lately reduced complications in a number of diseases by supplying healthy and functional mitochondria to the damaged tissue. For this reason, in this study, we used this technique to transplant human umbilical cord-derived mesenchymal stem cells (hUC-MSCs)-derived mitochondria as a suitable source for mitochondrial isolation into rat models of TBI to examine its therapeutic benefit and the results showed that the successful mitochondrial internalisation in the neuronal cells significantly reduced the number of brain cells undergoing apoptosis, alleviated astrogliosis and microglia activation, retained normal brain morphology and cytoarchitecture, and improved sensorimotor functions in a rat model of TBI. These data indicate that human umbilical cord-derived mesenchymal stem cells-isolated mitochondrial transplantation improves motor function in a rat model of TBI via rescuing neuronal cells from apoptosis and alleviating astrogliosis and microglia activation, maybe as a result of restoring the lost mitochondrial content.


Assuntos
Lesões Encefálicas Traumáticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Ratos , Animais , Gliose , Microglia , Mitocôndrias , Apoptose/fisiologia , Cordão Umbilical
4.
Hum Cell ; 36(4): 1441-1450, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36961656

RESUMO

Despite recent therapeutic advancements, cancer remains one of the leading causes of death worldwide, with mitochondrial dysfunction being associated with cancer initiation and progression, along with chemotherapeutic resistance and ferroptotic cell death failure; however, the significance of mitochondria in various cancer types remains a matter of debate for the moment. The aim of this study is to ascertain the outcome of transferring healthy mitochondria into the aggressive and rapidly proliferating prostate cancer (PC-3) cells and afterwards evaluate the efficacy of combination therapy with or without the ferroptosis inducer erastin. In this sense, normal mitochondria were first isolated from human umbilical cord-derived mesenchymal stem cells, human umbilical vein endothelial cells, and human embryonic kidney cells and were later transferred into PC-3 cells and rhodamine 6G-treated PC-3 cells exhibiting mitochondrial dysfunction. Next, cell proliferation and sensitivity to cisplatin were measured using Cell Counting Kit-8 and the Malondialdehyde Assay Lipid Peroxidation Kit, respectively, along with ferroptotic damage. Transferring the healthy mitochondria into PC-3 cells was observed to increase cell proliferation and rescue the cisplatin-induced cell death, but not the erastin-induced ferroptosis, as in mitochondrial transfer effectively enhanced erastin-mediated ferroptosis in PC-3 cells. Hence, the introduction of healthy mitochondria into the highly aggressive and proliferating cancer cells would be deemed a brand new therapeutic strategy for a variety of cancers.


Assuntos
Ferroptose , Neoplasias , Masculino , Humanos , Cisplatino/farmacologia , Células PC-3 , Células Endoteliais/metabolismo , Mitocôndrias/metabolismo , Neoplasias/metabolismo
5.
Hum Cell ; 36(1): 41-61, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36445534

RESUMO

Numerous factors are implicated in the onset and progression of ageing and neurodegenerative disorders, with defects in cell energy supply and free radicals regulation designated as being the main functions of mitochondria and highly accentuated in plentiful studies. Hence, analysing the role of mitochondria as one of the main factors implicated in these disorders could undoubtedly come in handy with respect to disease prevention and treatment. In this review, first, we will explore how mitochondria account for neurodegenerative disorders and ageing and later will draw the various pathways contributing to mitochondrial dysfunction in their distinct way. Also, we will discuss the deviation-countering mechanisms, particularly mitophagy, a subset of autophagy known as a much larger cellular defence mechanism and regulatory system, along with its potential therapeutic effects. Last but not least, we will be highlighting the mitochondrial transfer experiments with animal models of neurodegenerative disorders.


Assuntos
Mitocôndrias , Doenças Neurodegenerativas , Animais , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Envelhecimento/genética , Autofagia/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/terapia
6.
Adv Pharm Bull ; 12(3): 550-560, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35935055

RESUMO

Purpose: Currently, several disorders including burns, trauma, excisional and diabetic wounds, and bedsores threaten the human health. Application of mesenchymal stem cells (MSCs) is recommended for treatment of skin disorders. However, because of oxidative stress and inflammation after skin injury, survival of transplanted MSCs is low which in turn negatively affects the efficiency of the MSCs-based therapy. In an attempt to address the aforementioned challenge and introducing a novel potential therapeutic strategy, we employed combination therapy by lipocalin 2 (Lcn2)-engineered MSCs and a Metadichol (an inverse agonist of vitamin D receptor (VDR)) nanogel in a rat model of excisional wound. Methods: First, human umbilical cord MSCs (hUC-MSCs) was transfected by a recombinant plasmid encoding Lcn2 gene. Next, a combination of Metadichol nanogel and the engineered MSCs was co-applied on wound in rat model of excision injury. Finally the improvement of wound healing in experimental groups was evaluated by photography and histological assessments (hematoxylin and eosin staining). Results: Our findings revealed that the repair rate was higher in the group received combination therapy comparing to control groups. Notably, Metadichol+Lcn2-MSCs showed significantly higher wound contraction rate compared to control group at all time points (P value < 0.001). Furthermore, wound repair rate was 95% 14 days after surgery, and 100% after 21 days in the treatment groups. Our results also revealed that the combination therapy improved and accelerated the wound healing process. Conclusion: Our findings suggest a novel potential therapeutic strategy i.e. Lcn2-engineered MSCs and Metadichol for wound healing. However, further preclinical and clinical studies are required.

8.
Life Sci ; 304: 120704, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35714703

RESUMO

AIMS: Lipocalin 2 (Lcn2) is an antioxidant-related protein upregulated in various cellular stress conditions, especially cancer. In this study, we abrogated Lcn2 expression in MDA-MB-231 breast cancer cells using the CRISPR/Cas9 technology and evaluated its effect on cellular proliferation, migration, and ferroptotic cell death. MAIN METHODS: Validated human Lcn2 CRISPR/Cas9 knockout (KO) and homology-directed repair (HDR) plasmids were co-transfected into MDA-MB-231 breast cancer cells. Lcn2 gene knockout was confirmed at the transcriptional and protein levels using reverse transcription (RT)-PCR and enzyme-linked immunosorbent assay (ELISA). Cell proliferation was measured using Cell Counting Kit-8 (CCK-8) and colony formation assays. Cytotoxicity assay was performed in the presence or absence of erastin, cisplatin (CDDP), and ferrostatin-1 using the CCK-8 method. Ferroptosis level was measured using the malondialdehyde assay lipid peroxidation kit. The migration capacity of the cells was also evaluated using the scratch assay. KEY FINDINGS: Targeting Lcn2 using CRISPR/Cas9 reduced cellular proliferation and migration capability, and elevated the vulnerability of MDA-MB-231 cells to cisplatin. Furthermore, Lcn2 expression loss effectively promoted erastin-mediated ferroptosis in MDA-MB-231 cells. SIGNIFICANCE: Inhibition of Lcn2 is a potentially useful strategy for sensitizing MDA-MB-231 tumor cells to ferroptotic cell death.


Assuntos
Neoplasias da Mama , Ferroptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Feminino , Ferroptose/genética , Humanos , Lipocalina-2/genética , Piperazinas
10.
Stem Cell Rev Rep ; 18(8): 2709-2739, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35505177

RESUMO

Major breakthroughs and disruptive methods in disease treatment today owe their thanks to our inch by inch developing conception of the infinitive aspects of medicine since the very beginning, among which, the role of the regenerative medicine can on no account be denied, a branch of medicine dedicated to either repairing or replacing the injured or diseased cells, organs, and tissues. A novel means to accomplish such a quest is what is being called "medical biowaste", a large assortment of biological samples produced during a surgery session or as a result of physiological conditions and biological activities. The current paper accentuating several of a number of promising sources of biowaste together with their plausible applications in routine clinical practices and the confronting challenges aims at inspiring research on the existing gap between clinical and basic science to further extend our knowledge and understanding concerning the potential applications of medical biowaste.


Assuntos
Medicina Regenerativa , Humanos
11.
Brain Res Bull ; 165: 70-80, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33010349

RESUMO

Acute ischemia stroke (AIS) is one of the leading causes of mortality and disability worldwide, and its neurological impacts are devastating and permanent. There is no efficient and real treatment for acute ischemia stroke so far. Therefore, development of efficient therapeutic strategies is under focus of investigations by basic and clinical scientists. Brain is one of the organs with high energy consumption and metabolism. Hence, its functionality is highly dependent on mitochondrial activity and integrity. Therefore, mitochondria play a vital homeostatic role in neurons physiology and mitochondrial dysfunction implications have been reported in a variety of nervous system diseases including acute ischemia stroke. In an attempt to investigate and introduce a novel potential therapeutic strategy for AIS, we isolated healthy mitochondria from human umbilical cord derived mesenchymal stem cells (hUC-MSCs) followed by their intracerebroventricular transplantation in a rat model of ischemia, i.e. middle cerebral artery occlusion (MCAO). Here we report that the mitochondrial transplantation ameliorated the reperfusion/ischemia-induced damages as reflected by declined blood creatine phosphokinase level, abolished apoptosis, decreased astroglyosis and microglia activation, reduced infarct size, and improved motor function. Although further preclinical and clinical studies are required, our findings strongly suggest that transplantation of MSCs-derived mitochondria is a suitable, potential and efficient therapeutic option for acute ischemia stroke.


Assuntos
Apoptose/fisiologia , AVC Isquêmico/metabolismo , Transplante de Células-Tronco Mesenquimais , Destreza Motora/fisiologia , Traumatismo por Reperfusão/terapia , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Mitocôndrias/metabolismo , Neurônios/metabolismo , Ratos , Traumatismo por Reperfusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA