Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 48(6): 5063-5074, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34148207

RESUMO

The milieu of male germline stem cells (mGSCs) is characterized as a low-oxygen (O2) environment, whereas, their in-vitro expansion is typically performed under normoxia (20-21% O2). The comparative information about the effects of low and normal O2 levels on the growth and differentiation of caprine mGSCs (cmGSCs) is lacking. Thus, we aimed to investigate the functional and multilineage differentiation characteristics of enriched cmGSCs, when grown under hypoxia and normoxia. After enrichment of cmGSCs through multiple methods (differential platting and Percoll-density gradient centrifugation), the growth characteristics of cells [population-doubling time (PDT), viability, proliferation, and senescence], and expression of key-markers of adhesion (ß-integrin and E-Cadherin) and stemness (OCT-4, THY-1 and UCHL-1) were evaluated under hypoxia (5% O2) and normoxia (21% O2). Furthermore, the extent of multilineage differentiation (neurogenic, adipogenic, and chondrogenic differentiation) under different culture conditions was assessed. The survival, viability, and proliferation were significantly (p < 0.05) improved, thus, yielding a significantly (p < 0.05) higher number of viable cells with larger colonies under hypoxia. Furthermore, the expression of stemness and adhesion markers were distinctly upregulated under lowered O2 conditions. Conversely, the differentiated regions and expression of differentiation-specific genes [C/EBPα (adipogenic), nestin and ß-tubulin (neurogenic), and COL2A1 (chondrogenic)] were significantly (p < 0.05) reduced under hypoxia. Overall, the results demonstrate that culturing cmGSCs under hypoxia augments the growth characteristics and stemness but not the multilineage differentiation of cmGSCs, as compared with normoxia. These data are important to develop robust methodologies for ex-vivo expansion and lineage-committed differentiation of cmGSCs for clinical applications.


Assuntos
Células-Tronco Germinativas Adultas/metabolismo , Diferenciação Celular/fisiologia , Hipóxia Celular/fisiologia , Adipogenia , Células-Tronco Germinativas Adultas/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Células Cultivadas , Condrogênese , Células Germinativas/metabolismo , Cabras/genética , Masculino , Células-Tronco Mesenquimais/metabolismo , Oxigênio/metabolismo , Células-Tronco/metabolismo
2.
Zoolog Sci ; 22(10): 1157-62, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16286728

RESUMO

An attempt was made to determine cyclicity in yaks using plasma progesterone during the breeding and non-breeding seasons. Fifteen non-lactating yaks were used in this experiment. During the breeding season (July to November), blood samples were collected from 8 yaks at least twice weekly until estrus was observed and then at 2 days interval for 30 days. During the non-breeding season (February to March), blood samples were collected from the same number of yaks at 2-day interval for 30 days. Progesterone was determined in plasma samples by radioimmunoassay. During the breeding season, plasma progesterone at estrus was basal (< or = 0.2 ng/ml). Concentrations increased thereafter with a sharp increase during the late luteal phase, typically reaching peak levels around day 15. Concentrations then declined rapidly over the following 4 days, reaching basal levels at estrus. A high proportion (66.7%) of potential estrous periods (based on progesterone concentrations) went undetected, indicating that silent or weak estrus was a prominent problem in yak cows. During the non-breeding season, three animals were found to be cycling as determined by the patterns of plasma progesterone. Yet, behavioral symptoms of estrus were not observed in any of these yak cows. We conclude that peripheral plasma progesterone concentrations can be used to monitor cyclicity in yak cows effectively.


Assuntos
Bovinos/fisiologia , Ciclo Estral/fisiologia , Progesterona/sangue , Análise de Variância , Animais , Biomarcadores/sangue , Bovinos/sangue , Ciclo Estral/sangue , Radioimunoensaio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA