Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Oral Maxillofac Surg ; 51(12): 1573-1578, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35717278

RESUMO

Medical device embodiment involves the following elements: materials, design, and manufacturing. Failure of any one of these elements can result in failure of the device, despite the others being satisfactory. The abundance of clinical and basic science literature published since 1986, demonstrates the safety and efficacy of alloplastic temporomandibular joint replacement (TMJR). Currently, there are 19 countries producing 41 TMJR devices. More than 75% are custom designed, and 27% are additively manufactured. In light of the increasing number of TMJR devices being designed and manufactured around the world, this paper will discuss TMJR embodiment so that clinicians understand their present status as well as the prospects for the future of new and/or improved TMJR devices, to ensure that these devices continue to be safe and effective long-term surgical options for the management of end-stage TMJ pathologies.


Assuntos
Prótese Articular , Articulação Temporomandibular , Humanos , Articulação Temporomandibular/cirurgia , Articulação Temporomandibular/patologia , Prótese Mandibular
2.
J Bio Tribocorros ; 5(4)2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31828005

RESUMO

The problem of wear and corrosion of CoCrMo-implant surfaces in the human body following total joint replacement has been commonly investigated with tribocorrosion tests, using different lubricants meant to simulate the pseudo-synovial fluid. While results considering the synovial fluid components separately have highlighted their individual influence on the tribological performance of CoCrMo-alloy, an understanding about the influence of the synovial fluid components under the electrochemical point of view is missing. This work aims to investigate the effect of bovine serum albumin (BSA) and hyaluronic acid (HA) on electrochemical potential variations of CoCrMo alloys tested in a model synovial fluid. To simulate the environment inside the synovial capsule, the tests were performed inside a CO2 incubator at 37°C. Open circuit potential, electrochemical impedance spectroscopy, cathodic and anodic potentiodynamic measurements were performed with different electrolytes, prepared with cell culture medium (RMPI-1640), BSA and HA. The final CoCrMo-surface was analyzed by SEM/EDS and infrared spectroscopy. The influence of HA on the corrosion of the CoCrMo-alloy depended on the presence of BSA proteins adsorbed on the CoCrMo-surface: EIS and anodic polarization results showed a corrosive action of HA in the absence of adsorbed proteins. In the presence of both BSA and HA, organometallic precipitates were found on the CoCrMo surface following reverse anodic polarization, which remind of corrosion products found in-vivo. These results indicate that HA affects the interaction of CoCrMo implant alloys with protein-containing model synovial fluids, and suggest that HA needs to be considered in tribocorrosion studies for more clinically relevant outcomes.

3.
Biotribology (Oxf) ; 182019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30984811

RESUMO

Wear and corrosion in total hip replacement negatively impact implant service-life and patient well-being. The aim of this study was to generate a statistical response surface of material loss using an apparatus, capable of testing the effect of wear and corrosion products in situ on cells, such as macrophages. The test chamber of a ball-on-flat tribometer operating inside a CO2 incubator was integrated with an electrochemical setup and adapted for cell culture work. A 20-test series, following a 2-level 3-factor design of experiments, was performed with a ceramic head in reciprocating rotational motion against a CoCrMo-alloy disc, under constant load. The lubricant was cell culture medium (RPMI-1640+10vol% bovine serum). Response surfaces were generated, which statistically showed the influence of motion amplitude, load, and potential on the total mass loss and wear scar volume of the metallic discs. Potential had the highest impact on the total mass loss, while motion amplitude and load significantly influenced the wear scar volume. The concentrations of the alloy elements found in the lubricants reflected the bulk-alloy stoichiometry. The total concentration of Co released into the lubricant (2.3-63 ppm by total mass loss, 1.5 to 62 ppm by ICP-MS) corresponded well with the known range to trigger cell response. Tribocorrosion tests in the presence of cells and tissues, such as macrophages, lymphocytes and/or synovium, will be carried out in the future.

4.
Acta Biomater ; 32: 324-335, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26768232

RESUMO

In the management of end-stage temporomandibular joint disorders (TMD), surgeons must often resort to alloplastic temporomandibular joint (TMJ) total joint replacement (TJR) to increase mandibular function and form, as well as reduce pain. Understanding wear and failure mechanisms of TMJ TJR implants is important to their in vivo longevity. However, compared to orthopedic TJR devices, functional wear of failed TMJ TJR implants has not been examined. Not only do wear and corrosion influence TJR implant in vivo longevity, but so does reactivity of peri-implant tissue to these two events. The aim of this study was to examine and report on the wear of retrieved, failed metal-on-metal (MoM), metal-on-polymer (MoP), and titanium-nitride coated (TiN Coated) TMJ TJR implant components. A total cohort of 31 TMJ TJR devices were studied of which 28 were failed, retrieved TMJ TJRs, 3 were never implanted devices that served as controls. The mean time from implantation to removal was 7.24 years (range 3-15), SD 3.01. Optical microscopy, White Light Interferometry (WLI), Scanning Electron Microscopy (SEM), and Raman spectroscopy were utilized to characterize the surfaces of the devices. Data was acquired and evaluated by analyzing alloy microstructure. Substantial surface damage was observed between the articulating areas of the condylar head and the glenoid fossa components. Damage included pitting corrosion, evidence of deposited corrosion products, specific wear patterns, hard phases, surface depressions, and bi-directional scratches. Electrochemical analysis was performed on the MoM Control, retrieved, failed MoM, and TiN Coated devices. Electrochemical tests consisted of open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) tests conducted using the condylar head of the retrieved failed devices. EIS confirmed material properties as well as corrosion kinetics in vivo help to mitigate corrosion as reflected by the Raman spectroscopy results. In summary, this study demonstrated the role of wear and corrosion interactions on the early failure of TMJ TJR devices. Since the materials employed in most orthopedic TJR devices are similar to those used in TMJ TJR implants, studies such as this can provide data that will improve future embodiment paradigms for both. Further studies will include in vitro investigation of corrosion kinetics and the underlying tribocorrosion mechanism of TMJ TJR devices. STATEMENT OF SIGNIFICANCE: An attempt is made in this study, to examine the retrieved TMJ implants and conduct surface and electrochemical analysis; further a translation research approach is employed to compare the observations from the total hip replacement (THR) retrievals. A total cohort of 31 TMJ TJR devices were studied of which 28 were failed, retrieved TMJ TJRs, 3 were never implanted devices that served as controls. Data was acquired and evaluated by analyzing alloy microstructure. Substantial surface damage was observed between the articulating areas of the condylar head and the glenoid fossa components. Electrochemical analysis was performed on the MoM Control, retrieved, failed MoM, and TiN Coated devices. This study demonstrated the role of wear and corrosion interactions on the early failure of TMJ TJR devices. Since the materials employed in most orthopedic TJR devices are similar to those used in TMJ TJR implants, a comparison study was conducted.


Assuntos
Prótese Articular , Falha de Prótese , Articulação Temporomandibular/patologia , Espectroscopia Dielétrica , Eletricidade , Eletroquímica , Humanos , Interferometria , Microscopia Eletrônica de Varredura , Análise Espectral Raman
5.
J Mech Behav Biomed Mater ; 29: 199-212, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24099949

RESUMO

The demand for total hip replacement (THR) surgery is increasing in the younger population due to faster rehabilitation and more complete restoration of function. Up to 2009, metal-on-metal (MoM) hip joint bearings were a popular choice due to their design flexibility, post-operative stability and relatively low wear rates. The main wear mechanisms that occur along the bearing surface of MoM joints are tribochemical reactions that deposit a mixture of wear debris, metal ions and organic matrix of decomposed proteins known as a tribolayer. No in-depth electrochemical studies have been reported on the structure and characteristics of this tribolayer or about the parameters involved in its formation. In this study, we conducted an electrochemical investigation of different surfaces (bulk-like: control, nano-crystalline: new implant and tribolayer surface: retrieved implant) made out of two commonly used hip CoCrMo alloys (high-carbon and low-carbon). As per ASTM standard, cyclic polarization tests and electrochemical impedance spectroscopy tests were conducted. The results obtained from electrochemical parameters for different surfaces clearly indicated a reduction in corrosion for the tribolayer surface (Icorr: 0.76µA/cm(2)). Further, polarization resistance (Rp:2.39±0.60MΩ/cm(2)) and capacitance (Cdl:15.20±0.75µF/cm(2)) indicated variation in corrosion kinetics for the tribolayer surface, that attributed to its structure and stability in a simulated body environment.


Assuntos
Articulação do Quadril , Metais Pesados/química , Ligas/química , Carbono/química , Corrosão , Eletroquímica , Nanopartículas Metálicas/química , Propriedades de Superfície
6.
J Mech Behav Biomed Mater ; 12: 39-49, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22659365

RESUMO

The microstructural and mechanical properties of the hard phases in CoCrMo prosthetic alloys in both cast and wrought conditions were examined using transmission electron microscopy and nanoindentation. Besides the known carbides of M(23)C(6)-type (M=Cr, Mo, Co) and M(6)C-type which are formed by either eutectic solidification or precipitation, a new mixed-phase hard constituent has been found in the cast alloys, which is composed of ∼100 nm fine grains. The nanosized grains were identified to be mostly of M(23)C(6) type using nano-beam precession electron diffraction, and the chemical composition varied from grain to grain being either Cr- or Co-rich. In contrast, the carbides within the wrought alloy having the same M(23)C(6) structure were homogeneous, which can be attributed to the repeated heating and deformation steps. Nanoindentation measurements showed that the hardness of the hard phase mixture in the cast specimen was ∼15.7 GPa, while the M(23)C(6) carbides in the wrought alloy were twice as hard (∼30.7 GPa). The origin of the nanostructured hard phase mixture was found to be related to slow cooling during casting. Mixed hard phases were produced at a cooling rate of 0.2 °C/s, whereas single phase carbides were formed at a cooling rate of 50 °C/s. This is consistent with sluggish kinetics and rationalizes different and partly conflicting microstructural results in the literature, and could be a source of variations in the performance of prosthetic devices in-vivo.


Assuntos
Artroplastia de Quadril/instrumentação , Desenho de Prótese/métodos , Vitálio/química , Ligas , Artroplastia de Quadril/métodos , Fenômenos Biomecânicos , Elétrons , Desenho de Equipamento , Dureza , Humanos , Teste de Materiais , Microscopia/métodos , Microscopia Eletrônica de Varredura/métodos , Microscopia Eletrônica de Transmissão/métodos , Pressão , Próteses e Implantes , Temperatura
7.
Science ; 334(6063): 1687-90, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22194573

RESUMO

Arthritis is a leading cause of disability, and when nonoperative methods have failed, a prosthetic implant is a cost-effective and clinically successful treatment. Metal-on-metal replacements are an attractive implant technology, a lower-wear alternative to metal-on-polyethylene devices. Relatively little is known about how sliding occurs in these implants, except that proteins play a critical role and that there is a tribological layer on the metal surface. We report evidence for graphitic material in the tribological layer in metal-on-metal hip replacements retrieved from patients. As graphite is a solid lubricant, its presence helps to explain why these components exhibit low wear and suggests methods of improving their performance; simultaneously, this raises the issue of the physiological effects of graphitic wear debris.


Assuntos
Grafite/análise , Prótese de Quadril , Vitálio , Animais , Artroplastia de Quadril , Materiais Biocompatíveis , Bovinos , Corrosão , Fricção , Prótese de Quadril/efeitos adversos , Humanos , Nanopartículas Metálicas , Desenho de Prótese , Falha de Prótese , Soro , Espectroscopia de Perda de Energia de Elétrons , Análise Espectral Raman , Propriedades de Superfície
8.
Wear ; 271(9-10): 1658-1666, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21804652

RESUMO

Biological effects of wear products (particles and metal ions) generated by metal-on-metal (MoM) hip replacements made of CoCrMo alloy remain a major cause of concern. Periprosthetic osteolysis, potential hypersensitivity response and pseudotumour formation are possible reactions that can lead to early revisions. To accurately analyse the biological response to wear particles from MoM implants, the exact nature of these particles needs to be characterized. Most previous studies used energy-dispersive X-ray spectroscopy (EDS) analysis for characterization. The present study used energy filtered transmission electron microscopy (TEM) and electron diffraction pattern analysis to allow for a more precise determination of the chemical composition and to gain knowledge of the crystalline structure of the wear particles.Particles were retrieved from two different test rigs: a reciprocating sliding wear tribometer (CoCrMo cylinder vs. bar) and a hip simulator according to ISO 14242-1 (CoCrMo head vs. CoCrMo cup). All tests were conducted in bovine serum. Particles were retrieved from the test medium using a previously published enzymatic digestion protocol.Particles isolated from tribometer samples had a size of 100 - 500 nm. Diffraction pattern analysis clearly revealed the lattice structure of strain induced hcp ε-martensite. Hip simulator samples revealed numerous particles of 15 - 30 nm and 30 - 80 nm size. Most of the larger particles appeared to be only partially oxidized and exhibited cobalt locally. The smallest particles were Cr(2)O(3) with no trace of cobalt. It optically appeared that these Cr(2)O(3) particles were flaking off the surface of larger particles that depicted a very high intensity of oxygen, as well as chromium, and only background noise of cobalt. The particle size difference between the two test rigs is likely related to the conditions of the two tribosystems, in particular the difference in the sample geometry and in the type of sliding (reciprocating vs. multidirectional).Results suggest that there may be a critical particle size at which chromium oxidation and cobalt ionization is accelerated. Since earlier studies have shown that wear particles are covered by organic residue which may act as a passive layer inhibiting further oxidation, it would suggest that this organic layer may be removed during the particle isolation process, resulting in a change of the particle chemical composition due to their pyrophoric properties. However, prior to being isolated from the serum lubricant, particles remain within the contact area of head and cup as a third-body. It is therefore possible that during that time, particles may undergo significant transformation and changes in chemical composition in the contact area of the head and cup within the tribological interface due to mechanical interaction with surface asperities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA