Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611485

RESUMO

Flax seed is one of the richest plant sources of linolenic acid (LIN) and also contains unsaturated linoleic acid (LIO) and oleic acid (OLE). Stearoyl-ACP desaturases (SADs) and fatty acid desaturases (FADs) play key roles in the synthesis of flax fatty acids (FAs). However, there is no holistic view of which genes from the SAD and FAD families and at which developmental stages have the highest expression levels in flax seeds, as well as the influence of genotype and growth conditions on the expression profiles of these genes. We sequenced flax seed transcriptomes at 3, 7, 14, 21, and 28 days after flowering (DAF) for ten flax varieties with different oil FA compositions grown under three temperature/watering conditions. The expression levels of 25 genes of the SAD, FAD2, and FAD3 families were evaluated. FAD3b, FAD3a, FAD2b-2, SAD3-1, SAD2-1, SAD2-2, SAD3-2, FAD2a-1, and FAD2a-2 had the highest expression levels, which changed significantly during seed development. These genes probably play a key role in FA synthesis in flax seeds. High temperature and insufficient watering shifted the maximum expression levels of FAD and SAD genes to earlier developmental stages, while the opposite trend was observed for low temperature and excessive watering. Differences in the FAD and SAD expression profiles under different growth conditions may affect the FA composition of linseed oil. Stop codons in the FAD3a gene, resulting in a reduced LIN content, decreased the level of FAD3a transcript. The obtained results provide new insights into the synthesis of linseed oil.

2.
Data Brief ; 52: 109827, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38059001

RESUMO

Flax (Linum usitatissimum L.), one of the important and versatile crops, is used for the production of oil and fiber. To obtain high and stable yields of flax products, L. usitatissimum varieties should be cultivated under optimal conditions, including the composition of the soil microbiome. We evaluated the diversity of microorganisms in soils under conditions unfavorable for flax cultivation (suboptimal acidity or herbicide treatment) or infected with causative agents of harmful flax diseases (Septoria linicola, Colletotrichum lini, Melampsora lini, or Fusarium oxysporum f. sp. lini). For this purpose, twenty-two sod-podzolic soil samples were collected from flax fields and their metagenomes were analyzed using the regions of 16S ribosomal RNA gene (16S rDNA) and internal transcribed spacers (ITS) of the ribosomal RNA genes, which are used in phylogenetic studies of bacteria and fungi. Amplicons were sequenced on the Illumina MiSeq platform (reads of 300 + 300 bp). On average, we obtained 8,400 reads for ITS and 43,300 reads for 16S rDNA per sample. For identification of microorganisms in the soil samples, the Illumina reads were processed using DADA2. The raw data are deposited in the Sequence Read Archive under the BioProject accession number PRJNA956957. Tables listing the microorganisms identified in the soil samples are available in this article. The obtained dataset can be used to analyze the fungal and bacterial composition of flax field soils and their relationship to environmental conditions, including suboptimal soil acidity and infection with fungal pathogens. In addition, it can help to understand the influence of herbicide treatment on the microbial diversity of flax fields. Another useful application of our data is the ability to assess the suitability of the soil microbiome for flax cultivation.

3.
Int J Mol Sci ; 24(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37834335

RESUMO

FAD (fatty acid desaturase) and SAD (stearoyl-ACP desaturase) genes play key roles in the synthesis of fatty acids (FA) and determination of oil composition in flax (Linum usitatissimum L.). We searched for FAD and SAD genes in the most widely used flax genome of the variety CDC Bethune and three available long-read assembled flax genomes-YY5, 3896, and Atlant. We identified fifteen FAD2, six FAD3, and four SAD genes. Of all the identified genes, 24 were present in duplicated pairs. In most cases, two genes from a pair differed by a significant number of gene-specific SNPs (single nucleotide polymorphisms) or even InDels (insertions/deletions), except for FAD2a-1 and FAD2a-2, where only seven SNPs distinguished these genes. Errors were detected in the FAD2a-1, FAD2a-2, FAD3c-1, and FAD3d-2 sequences in the CDC Bethune genome assembly but not in the long-read genome assemblies. Expression analysis of the available transcriptomic data for different flax organs/tissues revealed that FAD2a-1, FAD2a-2, FAD3a, FAD3b, SAD3-1, and SAD3-2 were specifically expressed in embryos/seeds/capsules and could play a crucial role in the synthesis of FA in flax seeds. In contrast, FAD2b-1, FAD2b-2, SAD2-1, and SAD2-2 were highly expressed in all analyzed organs/tissues and could be involved in FA synthesis in whole flax plants. FAD2c-2, FAD2d-1, FAD3c-1, FAD3c-2, FAD3d-1, FAD3d-2, SAD3-1, and SAD3-2 showed differential expression under stress conditions-Fusarium oxysporum infection and drought. The obtained results are essential for research on molecular mechanisms of fatty acid synthesis, FAD and SAD editing, and marker-assisted and genomic selection for breeding flax varieties with a determined fatty acid composition of oil.


Assuntos
Linho , Linho/genética , Linho/metabolismo , Transcriptoma , Melhoramento Vegetal , Ácidos Graxos/metabolismo , Genômica
4.
Front Plant Sci ; 14: 1204899, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37860260

RESUMO

Members of the genus Populus L. play an important role in the formation of forests in the northern hemisphere and are used in urban landscaping and timber production. Populus species of closely related sections show extensive hybridization. Therefore, the systematics of the genus is rather complicated, especially for poplars of hybrid origin. We aimed to assess the efficiency of application of the sex-determining region (SDR) in addition to the nuclear and chloroplast genome loci traditionally used in phylogenetic studies of poplars to investigate relationships in sections Aigeiros Duby and Tacamahaca Spach. Targeted deep sequencing of NTS 5S rDNA, ITS, DSH 2, DSH 5, DSH 8, DSH 12, DSH 29, 6, 15, 16, X18, trnG-psbK-psbI, rps2-rpoC2, rpoC2-rpoC1, as well as SDR and ARR17 gene was performed for 379 poplars. The SDR and ARR17 gene together with traditionally used multicopy and single-copy loci of nuclear and chloroplast DNA allowed us to obtain a clustering that is most consistent with poplar systematics based on morphological data and to shed light on several controversial hypotheses about the origin of the studied taxa (for example, the inexpediency of separating P. koreana, P. maximowiczii, and P. suaveolens into different species). We present a scheme of relationships between species and hybrids of sections Aigeiros and Tacamahaca based on molecular genetic, morphological, and geographical data. The geographical proximity of species and, therefore, the possibility of hybridization between them appear to be more important than the affiliation of species to the same section. We speculate that sections Aigeiros and Tacamahaca are distinguished primarily on an ecological principle (plain and mountain poplars) rather than on a genetic basis. Joint analysis of sequencing data for the SDR and chloroplast genome loci allowed us to determine the ancestors of P. × petrovskoe - P. laurifolia (female tree) × P. × canadensis (male tree), and P. × rasumovskoe - P. nigra (female tree) × P. suaveolens (male tree). Thus, the efficiency of using the SDR for the study of poplars of sections Aigeiros and Tacamahaca and the prospects of its use for the investigation of species of the genus Populus were shown.

5.
J Fungi (Basel) ; 9(3)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36983469

RESUMO

Flax (Linum usitatissimum L.) is attacked by numerous devastating fungal pathogens, including Colletotrichum lini, Aureobasidium pullulans, and Fusarium verticillioides (Fusarium moniliforme). The effective control of flax diseases follows the paradigm of extensive molecular research on pathogenicity. However, such studies require quality genome sequences of the studied organisms. This article reports on the approaches to assembling a high-quality fungal genome from the Oxford Nanopore Technologies data. We sequenced the genomes of C. lini, A. pullulans, and F. verticillioides (F. moniliforme) and received different volumes of sequencing data: 1.7 Gb, 3.9 Gb, and 11.1 Gb, respectively. To obtain the optimal genome sequences, we studied the effect of input data quality and genome coverage on assembly statistics and tested the performance of different assembling and polishing software. For C. lini, the most contiguous and complete assembly was obtained by the Flye assembler and the Homopolish polisher. The genome coverage had more effect than data quality on assembly statistics, likely due to the relatively low amount of sequencing data obtained for C. lini. The final assembly was 53.4 Mb long and 96.4% complete (according to the glomerellales_odb10 BUSCO dataset), consisted of 42 contigs, and had an N50 of 4.4 Mb. For A. pullulans and F. verticillioides (F. moniliforme), the best assemblies were produced by Canu-Medaka and Canu-Homopolish, respectively. The final assembly of A. pullulans had a length of 29.5 Mb, 99.4% completeness (dothideomycetes_odb10), an N50 of 2.4 Mb and consisted of 32 contigs. F. verticillioides (F. moniliforme) assembly was 44.1 Mb long, 97.8% complete (hypocreales_odb10), consisted of 54 contigs, and had an N50 of 4.4 Mb. The obtained results can serve as a guideline for assembling a de novo genome of a fungus. In addition, our data can be used in genomic studies of fungal pathogens or plant-pathogen interactions and assist in the management of flax diseases.

6.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362031

RESUMO

High-quality genome sequences help to elucidate the genetic basis of numerous biological processes and track species evolution. For flax (Linum usitatissimum L.)-a multifunctional crop, high-quality assemblies from Oxford Nanopore Technologies (ONT) data were unavailable, largely due to the difficulty of isolating pure high-molecular-weight DNA. This article proposes a scheme for gaining a contiguous L. usitatissimum assembly using Nanopore data. We developed a protocol for flax nuclei isolation with subsequent DNA extraction, which allows obtaining about 5 µg of pure high-molecular-weight DNA from 0.5 g of leaves. Such an amount of material can be collected even from a single plant and yields more than 30 Gb of ONT data in two MinION runs. We performed a comparative analysis of different genome assemblers and polishers on the gained data and obtained the final 447.1-Mb assembly of L. usitatissimum line 3896 genome using the Canu-Racon (two iterations)-Medaka combination. The genome comprised 1695 contigs and had an N50 of 6.2 Mb and a completeness of 93.8% of BUSCOs from eudicots_odb10. Our study highlights the impact of the chosen genome construction strategy on the resulting assembly parameters and its eligibility for future genomic studies.


Assuntos
Linho , Nanoporos , Linho/genética , Genoma de Planta , Genômica , DNA
7.
Plants (Basel) ; 12(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36616223

RESUMO

Flax is grown worldwide for seed and fiber production. Linseed varieties differ in their oil composition and are used in pharmaceutical, food, feed, and industrial production. The field of application primarily depends on the content of linolenic (LIN) and linoleic (LIO) fatty acids. Inactivating mutations in the FAD3A and FAD3B genes lead to a decrease in the LIN content and an increase in the LIO content. For the identification of the three most common low-LIN mutations in flax varieties (G-to-A in exon 1 of FAD3A substituting tryptophan with a stop codon, C-to-T in exon 5 of FAD3A leading to arginine to a stop codon substitution, and C-to-T in exon 2 of FAD3B resulting in histidine to tyrosine substitution), three approaches were proposed: (1) targeted deep sequencing, (2) high resolution melting (HRM) analysis, (3) cleaved amplified polymorphic sequences (CAPS) markers. They were tested on more than a thousand flax samples of various types and showed promising results. The proposed approaches can be used in marker-assisted selection to choose parent pairs for crosses, separate heterogeneous varieties into biotypes, and select genotypes with desired homozygous alleles of the FAD3A and FAD3B genes at the early stages of breeding for the effective development of varieties with a particular LIN and LIO content, as well as in basic studies of the molecular mechanisms of fatty acid synthesis in flax seeds to select genotypes adequate to the tasks.

8.
Plants (Basel) ; 10(12)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34961087

RESUMO

As a result of the breeding process, there are two main types of flax (Linum usitatissimum L.) plants. Linseed is used for obtaining seeds, while fiber flax is used for fiber production. We aimed to identify the genes associated with the flax plant type, which could be important for the formation of agronomically valuable traits. A search for polymorphisms was performed in genes involved in the biosynthesis of cell wall components, lignans, fatty acids, and ion transport based on genome sequencing data for 191 flax varieties. For 143 of the 424 studied genes (4CL, C3'H, C4H, CAD, CCR, CCoAOMT, COMT, F5H, HCT, PAL, CTL, BGAL, ABC, HMA, DIR, PLR, UGT, TUB, CESA, RGL, FAD, SAD, and ACT families), one or more polymorphisms had a strong correlation with the flax type. Based on the transcriptome sequencing data, we evaluated the expression levels for each flax type-associated gene in a wide range of tissues and suggested genes that are important for the formation of linseed or fiber flax traits. Such genes were probably subjected to the selection press and can determine not only the traits of seeds and stems but also the characteristics of the root system or resistance to stresses at a particular stage of development, which indirectly affects the ability of flax plants to produce seeds or fiber.

9.
Front Plant Sci ; 12: 625416, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567016

RESUMO

The genus Populus is presented by dioecious species, and it became a promising object to study the genetics of sex in plants. In this work, genomes of male and female Populus × sibirica individuals were sequenced for the first time. To achieve high-quality genome assemblies, we used Oxford Nanopore Technologies and Illumina platforms. A protocol for the isolation of long and pure DNA from young poplar leaves was developed, which enabled us to obtain 31 Gb (N50 = 21 kb) for the male poplar and 23 Gb (N50 = 24 kb) for the female one using the MinION sequencer. Genome assembly was performed with different tools, and Canu provided the most complete and accurate assemblies with a length of 818 Mb (N50 = 1.5 Mb) for the male poplar and 816 Mb (N50 = 0.5 Mb) for the female one. After polishing with Racon and Medaka (Nanopore reads) and then with POLCA (Illumina reads), assembly completeness was 98.45% (87.48% duplicated) for the male and 98.20% (76.77% duplicated) for the female according to BUSCO (benchmarking universal single-copy orthologs). A high proportion of duplicated BUSCO and the increased genome size (about 300 Mb above the expected) pointed at the separation of haplotypes in a large part of male and female genomes of P. × sibirica. Due to this, we were able to identify two haplotypes of the sex-determining region (SDR) in both assemblies; and one of these four SDR haplotypes, in the male genome, contained partial repeats of the ARR17 gene (Y haplotype), while the rest three did not (X haplotypes). The analysis of the male P. × sibirica SDR suggested that the Y haplotype originated from P. nigra, while the X haplotype is close to P. trichocarpa and P. balsamifera species. Moreover, we revealed a Populus-specific repeat that could be involved in translocation of the ARR17 gene or its part to the SDR of P. × sibirica and other Populus species. The obtained results expand our knowledge on SDR features in the genus Populus and poplar phylogeny.

10.
Front Genet ; 12: 676935, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456967

RESUMO

Transcriptome sequencing of leaves, catkin axes, and flowers from male and female trees of Populus × sibirica and genome sequencing of the same plants were performed for the first time. The availability of both genome and transcriptome sequencing data enabled the identification of allele-specific expression. Such an analysis was performed for genes from the sex-determining region (SDR). P. × sibirica is an intersectional hybrid between species from sections Aigeiros (Populus nigra) and Tacamahaca (Populus laurifolia, Populus suaveolens, or Populus × moskoviensis); therefore, a significant number of heterozygous polymorphisms were identified in the SDR that allowed us to distinguish between alleles. In the SDR, both allelic variants of the TCP (T-complex protein 1 subunit gamma), CLC (Chloride channel protein CLC-c), and MET1 (DNA-methyltransferase 1) genes were expressed in females, while in males, two allelic variants were expressed for TCP and MET1 but only one allelic variant prevailed for CLC. Targeted sequencing of TCP, CLC, and MET1 regions on a representative set of trees confirmed the sex-associated allele-specific expression of the CLC gene in generative and vegetative tissues of P. × sibirica. Our study brings new knowledge on sex-associated differences in Populus species.

13.
Front Genet ; 11: 959, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193577

RESUMO

In the present work, a highly pathogenic isolate of Fusarium oxysporum f. sp. lini, which is the most harmful pathogen affecting flax (Linum usitatissimum L.), was sequenced for the first time. To achieve a high-quality genome assembly, we used the combination of two sequencing platforms - Oxford Nanopore Technologies (MinION system) with long noisy reads and Illumina (HiSeq 2500 instrument) with short accurate reads. Given the quality of DNA is crucial for Nanopore sequencing, we developed the protocol for extraction of pure high-molecular-weight DNA from fungi. Sequencing of DNA extracted using this protocol allowed us to obtain about 85x genome coverage with long (N50 = 29 kb) MinION reads and 30x coverage with 2 × 250 bp HiSeq reads. Several tools were developed for genome assembly; however, they provide different results depending on genome complexity, sequencing data volume, read length and quality. We benchmarked the most requested assemblers (Canu, Flye, Shasta, wtdbg2, and MaSuRCA), Nanopore polishers (Medaka and Racon), and Illumina polishers (Pilon and POLCA) on our sequencing data. The assembly performed with Canu and polished with Medaka and POLCA was considered the most full and accurate. After further elimination of redundant contigs using Purge Haplotigs, we achieved a high-quality genome of F. oxysporum f. sp. lini with a total length of 59 Mb, N50 of 3.3 Mb, and 99.5% completeness according to BUSCO. We also obtained a complete circular mitochondrial genome with a length of 38.7 kb. The achieved assembly expands studies on F. oxysporum and plant-pathogen interaction in flax.

14.
BMC Plant Biol ; 20(Suppl 1): 301, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33050879

RESUMO

BACKGROUND: Flax (Linum usitatissimum L.) is grown for fiber and seed in many countries. Flax cultivars differ in the oil composition and, depending on the ratio of fatty acids, are used in pharmaceutical, food, or paint industries. It is known that genes of SAD (stearoyl-ACP desaturase) and FAD (fatty acid desaturase) families play a key role in the synthesis of fatty acids, and some alleles of these genes are associated with a certain composition of flax oil. However, data on genetic polymorphism of these genes are still insufficient. RESULTS: On the basis of the collection of the Institute for Flax (Torzhok, Russia), we formed a representative set of 84 cultivars and lines reflecting the diversity of fatty acid composition of flax oil. An approach for the determination of full-length sequences of SAD1, SAD2, FAD2A, FAD2B, FAD3A, and FAD3B genes using the Illumina platform was developed and deep sequencing of the 6 genes in 84 flax samples was performed on MiSeq. The obtained high coverage (about 400x on average) enabled accurate assessment of polymorphisms in SAD1, SAD2, FAD2A, FAD2B, FAD3A, and FAD3B genes and evaluation of cultivar/line heterogeneity. The highest level of genetic diversity was observed for FAD3A and FAD3B genes - 91 and 62 polymorphisms respectively. Correlation analysis revealed associations between particular variants in SAD and FAD genes and predominantly those fatty acids whose conversion they catalyze: SAD - stearic and oleic acids, FAD2 - oleic and linoleic acids, FAD3 - linoleic and linolenic acids. All except one low-linolenic flax cultivars/lines contained both the substitution of tryptophan to stop codon in the FAD3A gene and histidine to tyrosine substitution in the FAD3B gene, while samples with only one of these polymorphisms had medium content of linolenic acid and cultivars/lines without them were high-linolenic. CONCLUSIONS: Genetic polymorphism of SAD and FAD genes was evaluated in the collection of flax cultivars and lines with diverse oil composition, and associations between particular polymorphisms and the ratio of fatty acids were revealed. The achieved results are the basis for the development of marker-assisted selection and DNA-based certification of flax cultivars.


Assuntos
Ácidos Graxos Dessaturases/genética , Ácidos Graxos/metabolismo , Linho/genética , Variação Genética , Oxigenases de Função Mista/genética , Substituição de Aminoácidos , DNA de Plantas , Linho/enzimologia , Linho/metabolismo , Genes de Plantas , Heterogeneidade Genética , Oxigenases de Função Mista/metabolismo , Análise de Sequência de DNA , Ácido alfa-Linolênico/metabolismo
15.
Data Brief ; 31: 105710, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32490079

RESUMO

Being a valuable agricultural plant, flax (Linum usitatissimum L.) is used for oil and fiber production. However, the cultivation of this agriculture faces an urgent problem of flax susceptibility to fungal diseases. The most destructive ones are caused by the representatives of Fusarium, Colletotrichum, Aureobasidium, Septoria, and Melampsora genera, reducing flax yields significantly. To combat such pathogens effectively, it is of high importance to assess their genetic diversity that can be used to develop molecular markers to distinguish fungal genera and species. Morphological analysis traditionally carried out for fungal identification requires a given amount of time and tends to be difficult. In the present work, we determined the DNA sequences that are frequently used for phylogenetic studies in fungi - internal transcribed spacer (ITS) and beta-tubulin (tub2), translation elongation factor 1-alpha (tef1), RNA polymerase II largest subunit (RPB1), RNA polymerase II second largest subunit (RPB2), and minichromosome maintenance protein (MCM7) genes - for 203 flax fungal pathogens of Fusarium oxysporum, F. avenaceum, F. solani, F. sporotrichiella, F. moniliforme, F. culmorum, F. semitectum, F. gibbosum, Colletotrichum lini, Aureobasidium pullulans, Septoria linicola, and Melampsora lini species. The sequencing was performed using the Illumina MiSeq platform with a 300+300 bp kit, and on average, about 2350 reads per sample were obtained that allows accurate identification of the genetic polymorphism. Raw data are stored at the Sequence Read Archive under the accession number PRJNA596387. The obtained data can be used for fungal phylogenetic studies and the development of a PCR-based test system for flax pathogen identification.

17.
Biomed Res Int ; 2019: 5023125, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941364

RESUMO

Flax (Linum usitatissimum L.) is a multipurpose crop which is used for the production of textile, oils, composite materials, pharmaceuticals, etc. Soil acidity results in a loss of seed and fiber production of flax, and aluminum toxicity is a major factor that depresses plant growth and development in acid conditions. In the present work, we evaluated gene expression alterations in four flax genotypes with diverse tolerance to aluminum exposure. Using RNA-Seq approach, we revealed genes that are differentially expressed under aluminum stress in resistant (Hermes, TMP1919) and sensitive (Lira, Orshanskiy) cultivars and selectively confirmed the identified alterations using qPCR. To search for differences in response to aluminum between resistant and sensitive genotypes, we developed the scoring that allowed us to suggest the involvement of MADS-box and NAC transcription factors regulating plant growth and development and enzymes participating in cell wall modifications in aluminum tolerance in flax. Using Gene Ontology (GO) enrichment analysis, we revealed that glutathione metabolism, oxidoreductase, and transmembrane transporter activities are the most affected by the studied stress in flax. Thus, we identified genes that are involved in aluminum response in resistant and sensitive genotypes and suggested genes that contribute to flax tolerance to the aluminum stress.


Assuntos
Alumínio/toxicidade , Linho/genética , Genes de Plantas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Concentração de Íons de Hidrogênio , Fenótipo
18.
BMC Plant Biol ; 19(Suppl 1): 54, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30813909

RESUMO

BACKGROUND: Flax (Linum usitatissimum L.) is grown for fiber and seed production. Unfavorable environments, such as nutrient deficiency and non-optimal soil acidity, decrease the quantity and quality of yield. Cultivation of tolerant to stress varieties can significantly reduce the crop losses. Understanding the mechanisms of flax response to the stresses and identification of resistance gene candidates will help in breeding of improved cultivars. In the present work, the response of flax plants to increased pH level and zinc (Zn) deficiency was studied. RESULTS: We performed high-throughput transcriptome sequencing of two flax cultivars with diverse tolerance to increased pH level and Zn deficiency: Norlin (tolerant) and Mogilevsky (sensitive). Sixteen cDNA libraries were created from flax plants grown under control conditions, increased pH level, Zn deficiency, and both stresses simultaneously, and about 35 million reads were obtained for each experiment type. Unfavorable pH resulted in significantly stronger gene expression alterations compared to Zn deficiency. Ion homeostasis, oxidoreductase activity, cell wall, and response to stress Gene Ontology terms were the most affected by unfavorable pH and Zn deficiency both in tolerant and sensitive flax cultivars. Upregulation of genes encoding metal transporters was identified under increased pH level, Zn deficiency, and both stresses simultaneously. Under Zn deficiency, only in tolerant cultivar Norlin, we revealed the induction of several photosynthesis-related genes and, in this way, this tolerant genotype could overcome unfavorable effects of reduced Zn content. CONCLUSIONS: We identified genes with expression alterations in flax under non-optimal soil acidity and Zn deficiency based on high-throughput sequencing data. These genes are involved in diverse processes, including ion transport, cell wall biogenesis, and photosynthesis, and could play an important role in flax response to the studied stresses. Moreover, genes with distinct expression changes between examined tolerant and sensitive genotypes could determine the mechanisms of flax tolerance to non-optimal soil acidity and Zn deficiency.


Assuntos
Linho/metabolismo , Solo/química , Zinco/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , RNA de Plantas/genética , Zinco/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA