Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharm Res ; 36(3): 49, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30746556

RESUMO

PURPOSE: Fast-acting insulin aspart (faster aspart) is a novel formulation of insulin aspart containing two additional excipients: niacinamide, to increase early absorption, and L-arginine, to optimize stability. The aim of this study was to evaluate the impact of niacinamide on insulin aspart absorption and to investigate the mechanism of action underlying the accelerated absorption. METHODS: The impact of niacinamide was assessed in pharmacokinetic analyses in pigs and humans, small angle X-ray scattering experiments, trans-endothelial transport assays, vascular tension measurements, and subcutaneous blood flow imaging. RESULTS: Niacinamide increased the rate of early insulin aspart absorption in pigs, and pharmacokinetic modelling revealed this effect to be most pronounced up to ~30-40 min after injection in humans. Niacinamide increased the relative monomer fraction of insulin aspart by ~35%, and the apparent permeability of insulin aspart across an endothelial cell barrier by ~27%. Niacinamide also induced a concentration-dependent vasorelaxation of porcine arteries, and increased skin perfusion in pigs. CONCLUSION: Niacinamide mediates the acceleration of initial insulin aspart absorption, and the mechanism of action appears to be multifaceted. Niacinamide increases the initial abundance of insulin aspart monomers and transport of insulin aspart after subcutaneous administration, and also mediates a transient, local vasodilatory effect.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/farmacocinética , Insulina Aspart/farmacocinética , Niacinamida/farmacologia , Absorção Subcutânea/efeitos dos fármacos , Animais , Células Cultivadas , Diabetes Mellitus Tipo 1/sangue , Relação Dose-Resposta a Droga , Células Endoteliais/metabolismo , Feminino , Humanos , Hipoglicemiantes/administração & dosagem , Injeções Subcutâneas , Insulina Aspart/administração & dosagem , Modelos Biológicos , Fluxo Sanguíneo Regional/efeitos dos fármacos , Espalhamento a Baixo Ângulo , Tela Subcutânea/irrigação sanguínea , Tela Subcutânea/efeitos dos fármacos , Tela Subcutânea/metabolismo , Sus scrofa , Vasodilatação/efeitos dos fármacos , Difração de Raios X
2.
J Mol Neurosci ; 62(3-4): 380-394, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28741142

RESUMO

Subarachnoid hemorrhage (SAH) is a serious clinical condition where leakage of blood into the subarachnoid space causes an acute rise in intracranial pressure and reduces cerebral blood flow, which may lead to delayed cerebral ischemia and poor outcome. In experimental SAH, we have previously shown that the outcome can be significantly improved by early inhibition of the MAPK/ERK kinase/extracellular signal-regulated kinase (MEK/ERK1/2) pathway. The aim of this study was to apply mass spectrometry to investigate the overall late effects of experimental SAH on cerebrovascular protein expression. SAH was induced in rats that were treated with the MEK1/2 inhibitor U0126 or vehicle. Neurological outcome was assessed using a battery of behavioral tests. Specific protein expression of large cerebral arteries was analyzed quantitatively with high-throughput tandem mass spectrometry. SAH resulted in a marked reduction of neurological scores, which was counteracted by U0126 treatment. Mass spectrometry analysis demonstrated regulation of 184 proteins after SAH, regulations that were in part prevented by U0126 treatment. Network analysis identified several protein networks including a strong structural network centered around 14-3-3. Additionally, protein networks with functions in mRNA metabolism and protein folding were identified. Treatment with U0126 inhibited cerebral vessel wall pERK1/2 expression and significantly improved outcome of the rats. In conclusion, we show that SAH induces a broad array of specific changes in the overall protein networks in cerebral artery smooth muscle cells and suggest that this is essential for understanding the vascular pathophysiology after SAH.


Assuntos
Artérias Cerebrais/metabolismo , Sistema de Sinalização das MAP Quinases , Proteoma/metabolismo , Hemorragia Subaracnóidea/metabolismo , Animais , Butadienos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Nitrilas/uso terapêutico , Proteoma/genética , Ratos , Ratos Sprague-Dawley , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/patologia
3.
J Mol Neurosci ; 61(3): 396-411, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27933490

RESUMO

This study aimed at obtaining an in-depth mapping of expressional changes of the cerebral microvasculature after transient global cerebral ischemia (GCI) and the impact on these GCI-induced expressional changes of post-GCI treatment with a mitogen-activated protein kinase kinase (MEK1/2) inhibitor. GCI was induced in male Wistar rats followed by treatment with either vehicle or the MEK1/2 inhibitor U0126 every 12 h post-GCI. Seventy-two hours after GCI or sham surgery, the cerebral microvasculature was isolated and the protein content analysed with state-of-the-art mass spectrometry. The proteomic profile of the isolated cerebral microvasculature 72 h after GCI (compared to sham) indicated that the main expressional changes could be divided into nine categories: (1) cellular respiration, (2) remodelling of the extracellular matrix, (3) decreased contractile phenotype, (4) clathrin-mediated endocytosis, (5) ribosomal activity, (6) expression of chromatin structure-related proteins, (7) altered synaptic activity, (8) altered G-protein signalling and (9) instability of the membrane potential. Treatment with U0126 partly normalized the expression of one or more of the proteins in all nine categories. Flow cytometry confirmed key findings from the proteome such as upregulation of the extracellular proteins lamininß2 and nidogen2 (p < 0.05) after GCI. These results provide valuable molecular insight into the broad and complex expressional changes in the cerebral microvasculature after GCI and the effect of early MEK1/2 inhibitor treatment on these changes.


Assuntos
Isquemia Encefálica/metabolismo , Microvasos/metabolismo , Proteoma/metabolismo , Animais , Isquemia Encefálica/genética , Endotélio Vascular/metabolismo , Laminina/genética , Laminina/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteoma/classificação , Proteoma/genética , Ratos , Ratos Wistar
4.
J Cereb Blood Flow Metab ; 35(2): 329-37, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25407271

RESUMO

Cerebral vasospasm and late cerebral ischemia (LCI) remain leading causes of mortality in patients experiencing a subarachnoid hemorrhage (SAH). This occurs typically 3 to 4 days after the initial bleeding and peaks at 5 to 7 days. The underlying pathophysiology is still poorly understood. Because SAH is associated with elevated levels of endothelin-1 (ET-1), focus has been on counteracting endothelin receptor activation with receptor antagonists like clazosentan, however, with poor outcome in clinical trials. We hypothesize that inhibition of intracellular transcription signaling will be an effective approach to prevent LCI. Here, we compare the effects of clazosentan versus the MEK1/2 blocker U0126 in a rat model of SAH. Although clazosentan directly inhibits the contractile responses in vivo to ET-1, it did not prevent SAH-induced upregulation of ET receptors in cerebral arteries and did not show a beneficial effect on neurologic outcome. U0126 had no vasomotor effect by itself but counteracts SAH-induced receptor upregulation in cerebral arteries and improved outcome after SAH. We suggest that because SAH induces elevated expression of several contractile receptor subtypes, it is not sufficient to block only one of these (ET receptors) but inhibition of transcriptional MEK1/2-mediated upregulation of several contractile receptors may be a viable way towards alleviating LCI.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Butadienos/farmacologia , Dioxanos/farmacologia , Inibidores Enzimáticos/farmacologia , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Nitrilas/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Receptores de Endotelina/biossíntese , Hemorragia Subaracnóidea/tratamento farmacológico , Sulfonamidas/farmacologia , Tetrazóis/farmacologia , Regulação para Cima/efeitos dos fármacos , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Artérias Cerebrais/metabolismo , Artérias Cerebrais/patologia , Modelos Animais de Doenças , Endotelina-1/metabolismo , MAP Quinase Quinase 2/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Hemorragia Subaracnóidea/metabolismo , Hemorragia Subaracnóidea/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA