Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Chemphyschem ; 24(2): e202200371, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36073234

RESUMO

A clear case of relationship between the monomer molecular structure and the capability of tuning the morphology of electrodeposited gas bubbles template polymer thin films is shown. To this end, a series of fluorene-bridged dicarbazole derivatives containing either linear or terminally branched polyfluorinated side chains connected to the fluorene subunit were synthesized and their electrochemical properties were investigated. The new compounds underwent electrochemical polymerization over indium tin oxide electrodes to give hydrophobic films with nanostructural and morphological properties strongly dependent on the nature of the side chains. Gas bubbles templated electropolymerization was next achieved by the addition of tiny amounts of water to the monomer solutions, without using surfactants. Within the investigated set of molecules, the nanostructural properties of the soft-templated films obtained from monomers bearing linear side chains could be fine-tuned by adjusting electrochemical parameters, leading to superhydrophobic surfaces.


Assuntos
Nanoestruturas , Interações Hidrofóbicas e Hidrofílicas , Nanoestruturas/química , Água , Fluorenos
2.
Angew Chem Int Ed Engl ; 61(48): e202212891, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36200274

RESUMO

Hole-transporting materials (HTMs) based on the 10H, 10'H-9,9'-spirobi [acridine] core (BSA50 and BSA51) were synthesized, and their electronic properties were explored. Experimental and theoretical studies show that the presence of rigid 3,6-dimethoxy-9H-carbazole moieties in BSA 50 brings about improved hole mobility and higher work function compared to bis(4-methoxyphenyl)amine units in BSA51, which increase interfacial hole transportation from perovskite to HTM. As a result, perovskite solar cells (PSCs) based on BSA50 boost power conversion efficiency (PCE) to 22.65 %, and a PSC module using BSA50 HTM exhibits a PCE of 21.35 % (6.5×7 cm) with a Voc of 8.761 V and FF of 79.1 %. The unencapsulated PSCs exhibit superior stability to devices employing spiro-OMeTAD, retaining nearly 90 % of their initial efficiency after 1000 h operation output. This work demonstrates the high potential of molecularly engineered spirobi[acridine] derivatives as HTMs as replacements for spiro-OMeTAD.

3.
Opt Express ; 29(23): 37617-37627, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808830

RESUMO

Adaptive optics can improve the performance of optical systems and devices by correcting phase aberrations. While in most applications wavefront sensing is employed to drive the adaptive optics correction, some microscopy methods may require sensorless optimization of the wavefront. In these cases, the correction is performed by describing the aberration as a linear combination of a base of influence functions, optimizing an image quality metric as a function of the coefficients. The influence functions base is generally chosen to either efficiently represent the adaptive device used or to describe generic wavefronts in an orthogonal fashion. A rarely discussed problem is that most correction bases have elements which introduce, together with a correction of the aberration, a shift of the imaging field of view in three dimensions. While simple methods to solve the problem are available for linear microscopy methods, nonlinear microscopy techniques such as multiphoton or second harmonic generation microscopy require non-trivial base determination. In this paper, we discuss the problem, and we present a method for calibrating a shift-less base on a spatial light modulator for two-photon microscopy.

4.
Adv Funct Mater ; 30(28): 2000228, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32684906

RESUMO

2D hybrid perovskites (2DP) are versatile materials, whose electronic and optical properties can be tuned through the nature of the organic cations (even when those are seemingly electronically inert). Here, it is demonstrated that fluorination of the organic ligands yields glassy 2DP materials featuring long-lived correlated electron-hole pairs. Such states have a marked charge-transfer character, as revealed by the persistent Stark effect in the form of a second derivative in electroabsorption. Modeling shows that electrostatic effects associated with fluorination, combined with the steric hindrance due to the bulky side groups, drive the formation of spatially dislocated charge pairs with reduced recombination rates. This work enriches and broadens the current knowledge of the photophysics of 2DP, which will hopefully guide synthesis efforts toward novel materials with improved functionalities.

5.
ACS Appl Mater Interfaces ; 12(8): 9395-9403, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32011851

RESUMO

Perovskite solar cells have set a new milestone in terms of efficiencies in the thin film photovoltaics category. Long-term stability of perovskite solar cells is of paramount importance but remains a challenging task. The lack of perovskite solar cells stability in real-time operating conditions erodes and impedes commercialization. Further improvements are essential with a view to delivering longer-lasting photovoltaic (PV) performances. An ideal path in this direction will be to identify novel dopants for boosting the conductivity and hole mobility of hole transport materials (HTMs), and by so doing, the usage of hygroscopic and deliquescent additive materials can be avoided. The present work demonstrates the employment of ionic liquids into a dissymmetric fluorene-dithiophene, FDT (2',7'-bis(bis(4-methoxyphenyl)amino) spiro[cyclopenta[2,1-b:3,4-b']dithiophene-4,9'-fluorene]) based HTM to understand the doping mechanisms. N-Heterocyclic hydrophobic ionic liquid, 1-butyl-3-methylpyidinium bis(trifluoromethylsulfonyl)imide (BMPyTFSI) as p-type dopant for FDT was found to increase the conductivity of FDT, to higher geometrical capacitance, to facilitate homogeneous film formation, and to enhance device stability. Our findings open up a broad range of hole-transport materials to control the degradation of the underlying water-sensitive active layer by substituting a hygroscopic element.

6.
Sci Rep ; 10(1): 1176, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980734

RESUMO

SnO2 nanoparticles have been synthesized and used as electron transport material (ETM) in dye sensitized solar cells (DSSCs), featuring two peripherally substituted push-pull zinc phthalocyanines (ZnPcs) bearing electron donating diphenylamine substituents and carboxylic acid anchoring groups as light harvesters. These complexes were designed on the base of previous computational studies suggesting that the integration of secondary amines as donor groups in the structure of unsymmetrical ZnPcs might enhance photovoltaics performances of DSSCs. In the case of TiO2-based devices, this hypothesis has been recently questioned by experimental results. Herein we show that the same holds for SnO2, despite the optimal matching of the optoelectronic characteristics of the synthesized nanoparticles and diphenylamino-substituted ZnPcs, thus confirming that other parameters heavily affect the solar cells performances and should be carefully taken into account when designing materials for photovoltaic applications.

7.
Chemistry ; 25(70): 16120-16127, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31595555

RESUMO

Photocatalyzed Giese-type alkylations of C(sp3 )-H bonds are very attractive reactions in the context of atom-economy in C-C bond formation. The main limitation of such reactions is that when using highly polymerizable olefin acceptors, such as unsubstituted acrylates, acrylonitrile, or methyl vinyl ketone, radical polymerization often becomes the dominant or exclusive reaction pathway. Herein, we report that the polymerization of such olefins is strongly limited or suppressed when combining the photocatalytic activity of benzophenone (BP) with a catalytic amount of Cu(OAc)2 . Under mild and operationally simple conditions, the Giese adducts resulting from the C(sp3 )-H functionalization of amines, alcohols, ethers, and cycloalkanes could be synthesized. Preliminary mechanistic studies have revealed that the reaction does not proceed through a radical chain, but through a dual BP/Cu photocatalytic process, in which both CuII and low-valent CuI/0 species, generated in situ by reduction by the BP ketyl radical, may react with α-keto or α-cyano intermediate radicals, thus preventing polymerization.

8.
Langmuir ; 35(26): 8732-8740, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31244262

RESUMO

The facile functionalization of the fluorene scaffold at the 2,7-positions was utilized to provide access to two soluble carbazole-π-carbazole derivatives CFC-H1 and CFC-F1 featuring fully hydrogenated and polyfluorinated alkyl chains at the 9-position of the fluorene π-bridging unit, respectively. The optical and electrochemical properties of the new dicarbazoles were investigated. Their electrochemical polymerization over Pt and indium tin oxide electrodes allowed the generation of electroactive polymeric films, whose physicochemical characteristics were strongly dependent on the kind of alkyl chain present on the fluorene bridge. In particular, the electropolymerization of the polyfluorinated monomer allowed the fabrication of thin films with good electrical conductivity, reversible electrochemical processes, good electrochromic properties, and enhanced water repellency with respect to its nonfluorinated analogue.

9.
Chemistry ; 25(38): 9078-9087, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31184410

RESUMO

A small series of boron-dipyrromethene (BODIPY) dyes, characterized by the presence of multibranched fluorinated residues, were designed and synthesized. The dyes differ in both the position (para-perfluoroalkoxy-substituted phenyl ring or boron functionalization) and number of magnetically equivalent fluorine atoms (27 or 54 fluorine atoms per molecule). Photophysical and crystallographic characterization of the synthesized BODIPYs was carried out to evaluate the effect of the presence of highly fluorinated moieties on the optical and morphological properties of such compounds.

10.
Front Chem ; 7: 946, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32064245

RESUMO

Low-dimensional hybrid perovskites have triggered significant research interest due to their intrinsically tunable optoelectronic properties and technologically relevant material stability. In particular, the role of the organic spacer on the inherent structural and optical features in two-dimensional (2D) perovskites is paramount for material optimization. To obtain a deeper understanding of the relationship between spacers and the corresponding 2D perovskite film properties, we explore the influence of the partial substitution of hydrogen atoms by fluorine in an alkylammonium organic cation, resulting in (Lc)2PbI4 and (Lf)2PbI4 2D perovskites, respectively. Consequently, optical analysis reveals a clear 0.2 eV blue-shift in the excitonic position at room temperature. This result can be mainly attributed to a band gap opening, with negligible effects on the exciton binding energy. According to Density Functional Theory (DFT) calculations, the band gap increases due to a larger distortion of the structure that decreases the atomic overlap of the wavefunctions and correspondingly bandwidth of the valence and conduction bands. In addition, fluorination impacts the structural rigidity of the 2D perovskite, resulting in a stable structure at room temperature and the absence of phase transitions at a low temperature, in contrast to the widely reported polymorphism in some non-fluorinated materials that exhibit such a phase transition. This indicates that a small perturbation in the material structure can strongly influence the overall structural stability and related phase transition of 2D perovskites, making them more robust to any phase change. This work provides key information on how the fluorine content in organic spacer influence the structural distortion of 2D perovskites and their optical properties which possess remarkable importance for future optoelectronic applications, for instance in the field of light-emitting devices or sensors.

11.
Nano Lett ; 18(9): 5467-5474, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30134112

RESUMO

Hybrid perovskite solar cells have been capturing an enormous research interest in the energy sector due to their extraordinary performances and ease of fabrication. However, low device lifetime, mainly due to material and device degradation upon water exposure, challenges their near-future commercialization. Here, we synthesized a new fluorous organic cation used as organic spacer to form a low-dimensional perovskite (LDP) with an enhanced water-resistant character. The LDP is integrated with three-dimensional (3D) perovskite absorbers in the form of MA0.9FA0.1PbI3 (FA = NH2CH = NH2+, MA = CH3NH3+) and Cs0.1FA0.74MA0.13PbI2.48Br0.39. In both cases, a LDP layer self-assembles as a thin capping layer on the top of the 3D bulk, making the perovskite surface hydrophobic. Our easy and robust approach, validated for different perovskite compositions, limits the interface deterioration in perovskite solar cells yielding to >20% power conversion efficient solar cells with improved stability, especially pronounced in the first hours of functioning under environmental conditions. As a consequence, single and multijunction perovskite devices, such as tandem solar cells, can benefit from the use of the waterproof stabilization here demonstrated, a concept which can be further expanded in the perovskite optoelectronic industry beyond photovoltaics.

12.
Sci Rep ; 7(1): 15675, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29142212

RESUMO

Computational studies have suggested that the integration of secondary amine as donor groups in the structure of unsymmetrical zinc phthalocyanine (ZnPc) should have positive effects on photovoltaic performance, once the molecule is integrated as light harvester in dye sensitized solar cells (DSSCs). Aiming at obtaining experimental confirmation, we synthesized a peripherally substituted push-pull ZnPc bearing three electron donating diphenylamine substituents and a carboxylic acid anchoring group and integrated it as sensitizer in TiO2-based DSSCs. Detailed functional characterization of solar energy converting devices resulted in ruling out the original hypothesis. The causes of this discrepancy have been highlighted, leading to a better understanding of the conditions for an effective design of push-pull diarylamino substituted ZnPcs for DSSCs.

13.
Chemphyschem ; 18(17): 2381-2389, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28627744

RESUMO

With a power conversion efficiency (PCE) exceeding 22 %, perovskite solar cells (PSCs) have thrilled photovoltaic research. However, the interface behavior is still not understood and is a hot topic of research: different processes occur over a hierarchy of timescales, from femtoseconds to seconds, which makes perovskite interface physics intriguing. Herein, through femtosecond transient absorption spectroscopy with spectral coverage extending into the crucial IR region, the ultrafast interface-specific processes at standard and newly molecularly engineered perovskite interfaces in state-of-the-art PSCs are interrogated. Ultrafast interfacial charge injection occurs with a time constant of 100 fs, resulting in hot transfer from energetic charges and setting the timescale for the first step involved in the complex charge-transfer process. This is also true for 20 % efficient devices measured under real operation, for which the femtosecond injection is followed by a slower picosecond component. These findings provide compelling evidence for the femtosecond interfacial charge-injection step and demonstrate a robust method for the straightforward identification of interfacial non-equilibrium processes on the ultrafast timescale.

14.
Orig Life Evol Biosph ; 44(3): 197-208, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25351682

RESUMO

Terpenoids have an essential function in present-day cellular membranes, either as membrane reinforcers in Eucarya and Bacteria or as principal membrane constituents in Archaea. We have shown that some terpenoids, such as cholesterol and α, ω-dipolar carotenoids reinforce lipid membranes by measuring the water permeability of unilamellar vesicles. It was possible to arrange the known membrane terpenoids in a 'phylogenetic' sequence, and a retrograde analysis led us to conceive that single-chain polyprenyl phosphates might have been 'primitive' membrane constituents. By using an optical microscopy, we have observed that polyprenyl phosphates containing 15 to 30 C-atoms form giant vesicles in water in a wide pH range. The addition of 10 % molar of some polyprenols to polyprenyl phosphate vesicles have been shown to reduce the water permeability of membranes even more efficiently than the equimolecular addition of cholesterol. A 'prebiotic' synthesis of C10 and C15 prenols from C5 monoprenols was achieved in the presence of a montmorillonite clay. Hypothetical pathway from C1 or C2 units to 'primitive' membranes and that from 'primitive' membranes to archaeal lipids are presented.


Assuntos
Archaea/química , Membrana Celular/química , Evolução Molecular , Fosfatos de Poli-Isoprenil/química , Silicatos de Alumínio , Bactérias/química , Bentonita , Carotenoides/química , Permeabilidade da Membrana Celular , Colesterol/química , Argila , Eucariotos/química , Concentração de Íons de Hidrogênio , Origem da Vida , Terpenos/química , Lipossomas Unilamelares/química , Água/química
15.
Org Lett ; 15(18): 4642-5, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23984707

RESUMO

A new donor/acceptor (D-A) spiro dye (SCPDT1) featuring two bithiophene units, connected through an sp(3)-hybridized carbon atom, was prepared by a multistep synthetic sequence involving the convenient assembly of the spiro system under mild catalytic conditions. The photocurrent spectrum of dye-sensitized solar cells incorporating SCPDT1 covers the spectral region ranging from 350 to 700 nm and reaches a wide maximum of ~80% in the 420-560 nm range. Power conversion efficiencies of up to 6.02% were obtained.

16.
Top Curr Chem ; 308: 213-32, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21928010

RESUMO

Fluorous derivatives of dibenzo-18-crown-6 ether were prepared, and then successfully applied in representative solid-liquid phase transfer catalysis reactions, which were performed in standard organic solvents, such as chlorobenzene and toluene, as well as in fluorous solvents, such as perfluoro-1,3-dimethylcyclohexane. It was clearly shown that properly designed fluoroponytailed crown ethers could promote the disintegration of the crystal lattice of alkali salts, and transfer anions from the solid surface into an apolar, non-coordinating perfluorocarbon phase, for phase transfer catalysis reactions in organic synthesis. Furthermore, 3,5-bis(perfluorooctyl)benzyl bromide and triethylamine were reacted under mild conditions to provide an analogue of the versatile phase transfer catalyst, benzyltriethylammonium chloride, containing two fluoroponytails. This fluoroponytailed quaternary ammonium salt was also successfully employed as a catalyst in a variety of organic reactions conducted under solid-liquid phase transfer catalysis conditions, without a perfluorocarbon phase. Thus, being both hydrophobic and lipophobic, fluorous crown ethers and ammonium salts, could be rapidly recovered in quantitative yields, and reused without loss of activity, over several reaction cycles.

17.
Anal Chem ; 84(2): 1104-11, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22128799

RESUMO

It is well known that the selectivity of an ion-selective electrode (ISE) depends on the stoichiometry of the complexes between its ionophore and the target and interfering ions. It is all the more surprising that the possibility for the simultaneous occurrence of multiple target ion complexes with different complex stoichiometries was mostly ignored in the past. Here, we report on the simultaneous formation of 1:1 and 1:2 complexes of a fluorophilic crown ether in fluorous ISE membranes and how this results in what looks like super-Nernstian responses. These increased response slopes are not caused by mass transfer limitations and can be readily explained with a phase boundary model, a finding that is supported by experimentally determined complex formation constants and excellent fits of response curves. Not only Cs(+) but also the smaller ions Li(+), Na(+), K(+), and NH(4)(+) form 1:1 and 1:2 complexes with the fluorophilic crown ether, with cumulative formation constants of up to 10(15.0) and 10(21.0) for of the 1:1 and 1:2 complexes, respectively. Super-Nernstian responses of the type observed with these electrodes are probably not particularly rare but have lacked in the past an adequate discussion in the literature, remaining ignored or misinterpreted. Preliminary calculations also predict sub-Nernstian responses and potential dips of a similar origin. The proper understanding of such phenomena will facilitate the development of new ISEs based on ionophores that form complexes of higher stoichiometries.


Assuntos
Eletroquímica , Eletrodos Seletivos de Íons , Ionóforos , Membranas Artificiais , Potenciometria
18.
J Am Chem Soc ; 133(51): 20869-77, 2011 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22070518

RESUMO

Manganese(III) complexes of three fluorophilic salen derivatives were used to prepare ion-selective electrodes (ISEs) with ionophore-doped fluorous sensing membranes. Because of their extremely low polarity and polarizability, fluorous media are not only chemically very inert but also solvate potentially interfering ions poorly, resulting in a much improved discrimination of such ions. Indeed, the new ISEs exhibited selectivities for CO(3)(2-) that exceed those of previously reported ISEs based on nonfluorous membranes by several orders of magnitude. In particular, the interference from chloride and salicylate was reduced by 2 and 6 orders of magnitude, respectively. To achieve this, the selectivities of these ISEs were fine-tuned by addition of noncoordinating hydrophobic ions (i.e., ionic sites) into the sensing membranes. Stability constants of the anion-ionophore complexes were determined from the dependence of the potentiometric selectivities on the charge sign of the ionic sites and the molar ratio of ionic sites and the ionophore. For this purpose, a previously introduced fluorophilic tetraphenylborate and a novel fluorophilic cation with a bis(triphenylphosphoranylidene)ammonium group, (R(f6)(CH(2))(3))(3)PN(+)P(R(f6)(CH(2))(3))(3), were utilized (where R(f6) is C(6)F(13)). The optimum CO(3)(2-) selectivities were found for sensing membranes composed of anionic sites and ionophore in a 1:4 molar ratio, which results in the formation of 2:1 complexes with CO(3)(2-) with stability constants up to 4.1 × 10(15). As predicted by established theory, the site-to-ionophore ratios that provide optimum potentiometric selectivity depend on the stoichiometries of the complexes of both the primary and the interfering ions. However, the ionophores used in this study give examples of charges and stoichiometries previously neither explicitly predicted by theory nor shown by experiment. The exceptional selectivity of fluorous membranes doped with these carbonate ionophores suggests their use not only for potentiometric sensing but also for other types of sensors, such as the selective separation of carbonate from other anions and the sequestration of carbon dioxide.


Assuntos
Carbonatos/análise , Flúor/química , Ionóforos/química , Compostos Organometálicos/química , Potenciometria/métodos , Etilenodiaminas/química , Eletrodos Seletivos de Íons , Manganês/química , Membranas Artificiais , Sensibilidade e Especificidade
19.
Chemistry ; 11(20): 6032-9, 2005 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-16052660

RESUMO

Monolayers at the gas/water interface have been used as an adjustable catalytic system in which the molecular density may be modified. Mn(III)-salen complexes bearing perfluoroalkyl substituents have been organized as a Langmuir film on an aqueous subphase containing a urea/hydrogen peroxide adduct (UHP, the oxidant) and cinnamyl alcohol (the substrate). The catalytic activity of the monolayer for the epoxidation of the alkene dissolved in water has been demonstrated and the reaction kinetic investigated. For a constant area per molecule of catalyst, the reaction rate exhibits first-order dependence on oxidant concentration and zero-order dependence on alkene concentration, in agreement with the reaction orders reported for Mn(III)-salen-catalyzed epoxidation reactions carried out in solution. Furthermore, kinetic experiments suggest an enhanced activity of the catalysts assembled in a Langmuir film relative to that observed in bulk reaction. Finally, varying the molecular density of the catalyst at the gas/water interface highlights an important dependence of the catalytic activity of the layer with the mean molecular area. A strong increase of the catalytic properties of the monolayer was observed for a mean molecular area of 140-145 A2, an increase which was supposedly related to a modification of the Mn(III)-salen complex orientation at the interface upon compression. This hypothesis was supported by PM-IRRAS (polarization modulation infrared reflection adsorption spectroscopy) experiments performed in situ on the monolayer. Such results demonstrate that a soft and adjustable molecular system like a Langmuir film can be used to better understand the reactivity in various heterogeneous and/or pseudohomogeneous (such as those based on dendrimers) catalytic systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA