Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
2.
Environ Sci Ecotechnol ; 16: 100265, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37101565

RESUMO

Seasonal or permanent water scarcity in off-grid communities can be alleviated by recycling water in decentralized wastewater treatment systems. Nature-based solutions, such as constructed wetlands (CWs), have become popular solutions for sanitation in remote locations. Although typical CWs can efficiently remove solids and organics to meet water reuse standards, polishing remains necessary for other parameters, such as pathogens, nutrients, and recalcitrant pollutants. Different CW designs and CWs coupled with electrochemical technologies have been proposed to improve treatment efficiency. Electrochemical systems (ECs) have been either implemented within the CW bed (ECin-CW) or as a stage in a sequential treatment (CW + EC). A large body of literature has focused on ECin-CW, and multiple scaled-up systems have recently been successfully implemented, primarily to remove recalcitrant organics. Conversely, only a few reports have explored the opportunity to polish CW effluents in a downstream electrochemical module for the electro-oxidation of micropollutants or electro-disinfection of pathogens to meet more stringent water reuse standards. This paper aims to critically review the opportunities, challenges, and future research directions of the different couplings of CW with EC as a decentralized technology for water treatment and recovery.

3.
Environ Sci Technol ; 55(22): 15371-15379, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34727498

RESUMO

Nitrate contamination is a common problem in groundwater around the world. Nitrate can be cathodically reduced in bioelectrochemical systems using autotrophic denitrifiers with low energy investment and without chemical addition. Successful denitrification was demonstrated in previous studies in both microbial fuel cells and microbial electrolysis cells (MECs) with continuous current flow, whereas the impact of intermittent current supply (e.g., in a fluidized-bed system) on denitrification and particularly the electron-storing capacity of the denitrifying electroactive biofilms (EABs) on the cathodes have not been studied in depth. In this study, two continuously fed MECs were operated in parallel under continuous and periodic polarization modes over 280 days, respectively. Under continuous polarization, the maximum denitrification rate reached 233 g NO3--N/m3/d with 98% nitrate removal (0.6 mg NO3--N/L in the effluent) with negligible intermediate production, while under a 30 s open-circuit/30 s polarization mode, 86% of nitrate was removed at a maximum rate of 205 g NO3--N/m3/d (4.5 mg NO3--N/L in the effluent) with higher N2O production (6.6-9.3 mg N/L in the effluent). Conversely, periodic polarization could be an interesting approach in other bioelectrochemical processes if the generation of chemical intermediates (partially reduced or oxidized) should be favored. Similar microbial communities dominated byGallionellaceaewere found in both MECs; however, swapping the polarization modes and the electrochemical analyses suggested that the periodically polarized EABs probably developed a higher ability for electron storage and transfer, which supported the direct electron transfer pathway in discontinuous operation or fluidized biocathodes.


Assuntos
Fontes de Energia Bioelétrica , Água Subterrânea , Processos Autotróficos , Desnitrificação , Nitratos
4.
Biosens Bioelectron ; 174: 112813, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33303324

RESUMO

The presence of microorganisms performing extracellular electron transfer has been established in many environments. Research to determine their role is moving slowly due to the high cost of potentiostats and the variance of data with small number of replicates. Here, we present a 128-channel potentiostat, connected to a 128 gold electrode array. Whereas the system is able to perform simultaneously 128 (bio)electrochemical measurements with an independent electrical signal input, the present manufacturing of the array limited the number of effective channels for this study to 77. We assessed the impact of 11 electrode potentials ranging from -0.45V to +0.2V vs. Ag/AgCl (7 replicates per potential) on the growth and electrochemical characteristics of anodic electroactive biofilms (EABs) formed by acetate-fed microbial communities. After 7 days of growth, maximum current was reached for electrodes poised at -0.3V, closely followed by -0.25V and -0.1V to +0.1V, a range well-fitting the midpoint potential of minerals naturally reduced by electroactive bacteria such as Geobacter Sulfurreducens. There was no significant difference in apparent midpoint potential of the EABs (-0.35V), suggesting that the mechanism of heterogeneous electron transfer was not affected by the electrode potential. The EABs poised below current plateau potential (≤-0.3V) exhibited slower growth but higher charge transfer parameters. The high-throughput and high reproducibility provided by the array may have a major facilitating impact on the field of electromicrobiology. Key aspects to improve are data processing algorithms to deal with the vast amount of generated data, and manufacturing of the electrode array itself.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Geobacter , Biofilmes , Eletrodos , Transporte de Elétrons , Reprodutibilidade dos Testes
5.
Biosens Bioelectron ; 171: 112700, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33096434

RESUMO

The mechanisms of extracellular electron transfer and the microbial taxa associated with the observed electroactivity are fundamental to oxygen-reducing microbial cathodes. Here we confirmed the apparent 'electroautotrophic' behavior of electroactive biofilms (EABs) grown on carbon electrodes at + 0.20V vs. Ag/AgCl under air. The EABs catalyzed O2 electroreduction into water ─ as demonstrated by a rotating ring disc experiment ─ and performed quasi-reversible heterogeneous electron transfer (HET). By using electrodes of low surface capacitance, we report for the first time nonturnover redox peaks that are very likely intrinsic to the redox protein(s) performing the HET. Because the formal potential of redox proteins is pH-dependent, we investigated the evolution of characteristic potentials of the EABs with the solution pH: (i) open circuit potential, (ii) half-wave potential, and (iii) averaged peak potential of nonturnover cyclic voltammograms, which is presumably the formal potential of the primary electron acceptor(s) for the community. In addition to describing the redox thermodynamics behind HET, we suggest that the corresponding data provides an electrochemical fingerprint that could help in comparing the electroactivity of diverse microbial communities. The taxon with the highest relative abundance in our EABs was an unclassified member of the Gammaproteobacteria that was phylogenetically closely related to most other abundant unclassified Gammaproteobacteria commonly reported in EABs reducing O2 at high potentials, further suggesting that those taxa are responsible for the bioelectroactivity. Phylogenetic and electrochemical similarities between reported EABs jointly support the hypothesis that similar biomolecular mechanisms may be responsible for this highly probable electroautotrophic metabolism.


Assuntos
Técnicas Biossensoriais , Oxigênio , Filogenia , Biofilmes , Eletrodos , Oxirredução
6.
Curr Opin Biotechnol ; 62: 48-57, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31593911

RESUMO

Microbial electrosynthesis (MES) is an electrochemical process used to drive microbial metabolism for bio-production, such as the reduction of CO2 into industrially relevant organic products as an alternative to current fossil-fuel-derived commodities. After a decade of research on MES from CO2, figures of merit have increased significantly but are plateauing yet far from those expected to allow competitiveness for synthesis of commodity chemicals. Here we discuss the substantial technological shortcomings still associated with MES and evoke possible ways to mitigate them. It appears particularly challenging to obtain both relevant production rates (driven by high current densities) and energy conversion efficiency (i.e. low cell voltage) in microbial-compatible electrolytes. More competitive processes could arise by decoupling effective abiotic electroreductions (e.g. CO2 to CO or ethanol; H2 evolution) with subsequent fermentation processes.


Assuntos
Dióxido de Carbono , Eletrodos , Fermentação
7.
Biosens Bioelectron ; 132: 115-121, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30856427

RESUMO

Electroactive biofilms (EABs) have recently attracted considerable research interest for their possible use as amperometric biosensors in environmental or bioprocess monitoring, for example for in situ detection of toxic compounds. Almost exclusively, corresponding research has focused on heterotrophic, anodic EABs. These biofilms require sufficiently high organic loads and anoxic conditions to deliver a stable baseline current. Conversely, electroautotrophic O2-reducing EABs have recently been proposed to monitor toxic shocks in oxic solutions that are poor or devoid of organic substrate. This was done in optimal media and only assessed for formaldehyde as a model toxic compound. Here we show that O2-reducing EABs can grow in unamended tap water on carbon electrodes at + 0.2 V vs. Ag/AgCl. They retained substantial electroactivity for at least eight months without adding exogenous compounds. The most represented operational taxonomic units were assigned to the phylum Gammaproteobacteria (25 ±â€¯15%, n = 5 electrodes). Cyclic voltammograms showed a reproducible nernstian behavior for O2 reduction with a mid-wave potential at + 0.27 V and variable plateau current densities ranging from - 1 to - 22 µA cm-2 (n = 10 electrodes). The biocatalytic current was substantially impacted by the addition of either of three tested heavy metals (Hg(II), Cr(VI) or Pb(II)) or by organic pollutants (formaldehyde, 2,4-dichlorophenol, benzalkonium chloride), with limits of detection ranging from 0.5 to 10 mg L-1 (2.5-61 µmol L-1). Response times were typically around 1 min. Comparison with previous reports suggests that O2-reducing microbial cathodes may be more sensitive to toxic shocks than anodic, heterotrophic EABs.


Assuntos
Técnicas Biossensoriais/instrumentação , Eletrodos/microbiologia , Gammaproteobacteria/fisiologia , Oxigênio/metabolismo , Poluentes Químicos da Água/análise , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Técnicas Biossensoriais/métodos , Água Potável/análise , Condutividade Elétrica , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Desenho de Equipamento , Formaldeído/análise , Formaldeído/metabolismo , Gammaproteobacteria/efeitos dos fármacos , Metais Pesados/análise , Metais Pesados/metabolismo , Oxirredução , Poluentes Químicos da Água/metabolismo
8.
Water Res ; 154: 117-124, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30782553

RESUMO

Lithium is today an essential raw material for renewable energy technologies and electric mobility. Continental brines as present in the Lithium Triangle are the most abundant and the easiest to exploit lithium sources. Lithium is present in diluted concentrations together with different ions, and it is imperative to fully remove both magnesium and calcium before lithium carbonate can be precipitated. Here we use membrane electrolysis as a novel method to generate hydroxyl groups in situ in a two-chamber electrochemical cell with a side crystallizer, omitting the need for chemical addition and not leading to substantial loss of lithium rich brine. Batch electrolysis experiments fully removed more than 99.99% of both Mg2+ and Ca2+ for three different native South-American brines treated at current densities ranging from 27 to 350 A m-2 (final concentrations were below ICP detection limit: < 0.05 mg L-1). For a brine containing 3090 mg L-1 of Mg2+ and 685 mg L-1 of Ca2+, 62 kWh m-3 are needed for the full removal of both cations when a current density of 223 A m-2 is employed. Most importantly, the Li+ concentration in the brine is not affected. The removed cations are precipitated as Mg(OH)2 and Ca(OH)2. Our process has the potential to simultaneously recover lithium, magnesium, and calcium compounds, minimizing waste production.


Assuntos
Lítio , Sais , Compostos de Cálcio , Eletrólise
9.
FEMS Microbiol Ecol ; 95(2)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30445447

RESUMO

Sporomusa sphaeroides related strains are to date the only homoacetogens known to increase metallic iron corrosion. The goal of this work was to isolate additional homoacetogenic bacteria capable of using Fe(0) as electron donor and to explore their extracellular electron transfer mechanism. Enrichments were started from anoxic corrosion products and yielded Acetobacterium as main homoacetogenic genus. Isolations were performed with a new procedure using plates with a Fe(0) powder top layer. An Acetobacterium strain, closely related to A. malicum and A. wieringae, was isolated, in addition to a S. sphaeroides strain. The Acetobacterium isolate significantly increased Fe(0) corrosion ((1.44 ± 0.16)-fold) compared to abiotic controls. The increase of corrosion by type strains ranged from (1.28 ± 0.13)-fold for A. woodii to (2.03 ± 0.22)-fold for S. sphaeroides. Hydrogen mediated the electron uptake from Fe(0) by the acetogenic isolates and tested type strains. Exchange of the medium and SEM imaging suggested that cells were attached to Fe(0). The corrosion enhancement mechanism is for all tested strains likely related to free extracellular components catalyzing hydrogen formation on the Fe(0) surface, or to the maintenance of low hydrogen concentrations on the Fe(0) surface by attached cells thereby thermodynamically favoring hydrogen formation.


Assuntos
Acetobacterium/isolamento & purificação , Acetobacterium/metabolismo , Transporte de Elétrons/fisiologia , Ferro/metabolismo , Corrosão , Elétrons , Firmicutes/metabolismo , Hidrogênio
10.
Water Res ; 149: 111-119, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423502

RESUMO

Electrochemical sulfide removal can be attractive as a zero-chemical-input approach for treatment of waste streams such as spent caustics coupled to caustic recovery. A key concern is possible decline in catalytic activity, due to passivation from deposited elemental sulfur (S0) on the anode surface and stability limitation, due to sulfide oxidation under highly alkaline conditions. In this study, six commercially available electrode materials (Ir Mixed Metal Oxide (MMO), Ru MMO, Pt/IrOx, Pt, PbOx and TiO2/IrTaO2 coated titanium-based electrodes) were tested to investigate the impact of the electrocatalyst on the process efficiency in terms of sulfide removal and final product of sulfide oxidation, as well as to determine the stability of the electrocatalyst under high sulfide concentrations (50 mM Na2S) and high alkalinity (pH > 12). Short-term experiments showed that the catalyst type impacts the anode potential and the sulfide oxidation reaction products. Longer-term experiments under current densities up to 200 A m-2 showed a high differentiation in stability performance among the catalysts. Ru MMO was the most active towards sulfide oxidation with a coulombic efficiency of 63.2 ±â€¯0.5% at an average anode potential of 0.92 ±â€¯0.17 V vs SHE. Ir MMO was the most stable, preserving 100% of its original catalyst loading during the tests. The results demonstrated that Ru MMO and Ir MMO were the most suitable electrode materials for sulfide oxidation under highly alkaline conditions, while the need for establishing a good trade-off between activity, stability and cost still persists.


Assuntos
Sulfetos , Águas Residuárias , Eletrodos , Oxirredução , Óxidos
11.
Biosens Bioelectron ; 121: 183-191, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30218926

RESUMO

Anodic electroactive biofilms (EABs) need to overcome low current densities for applications such as microbial fuel cells or biosensors. EABs can store charge in self-produced redox proteins when temporarily left in open circuit, and discharge them once the electrode is appropriately repolarized, thus behaving as pseudocapacitors. Here we investigated the effect of such periodic polarization on the intrinsic nature of the EABs during their entire growth (i.e. starting from inoculation and for 10 days) on glassy carbon electrodes. An optimal periodic polarization (half-period of 10 s) greatly increased the maximum steady-state current density delivered by the Geobacter-dominated EABs (up to 1.10 ±â€¯0.02 mA cm-2, n = 3 electrodes) when compared to continuously polarized EABs (0.41 ±â€¯0.04 mA cm-2); and increased the amount of electric charges produced per hour by 69 ±â€¯17% even taking into account the half-periods of open circuit. This enhancement was highly correlated with a substantial increase in charge carriers concentration (10.6 ±â€¯0.5 mMe- vs. 2.9 ±â€¯0.6 mMe-), allowing higher charge storage capacity and higher electron mobility across the EABs. Our results suggest that appropriate periodic polarizations may upregulate the expression of heme-containing redox proteins associated with the matrix, such as c-type cytochromes. The EABs grown under periodic polarization presented mushroom-like structures on their top layers, while EABs grown under continuous polarization were flat.


Assuntos
Biofilmes , Técnicas Biossensoriais , Eletrodos/microbiologia , Fenômenos Eletrofisiológicos , Geobacter/fisiologia , Fontes de Energia Bioelétrica
12.
Appl Environ Microbiol ; 84(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30054363

RESUMO

The involvement of Shewanella spp. in biocorrosion is often attributed to their Fe(III)-reducing properties, but they could also affect corrosion by using metallic iron as an electron donor. Previously, we isolated Shewanella strain 4t3-1-2LB from an acetogenic community enriched with Fe(0) as the sole electron donor. Here, we investigated its use of Fe(0) as an electron donor with fumarate as an electron acceptor and explored its corrosion-enhancing mechanism. Without Fe(0), strain 4t3-1-2LB fermented fumarate to succinate and CO2, as was shown by the reaction stoichiometry and pH. With Fe(0), strain 4t3-1-2LB completely reduced fumarate to succinate and increased the Fe(0) corrosion rate (7.0 ± 0.6)-fold in comparison to that of abiotic controls (based on the succinate-versus-abiotic hydrogen formation rate). Fumarate reduction by strain 4t3-1-2LB was, at least in part, supported by chemical hydrogen formation on Fe(0). Filter-sterilized spent medium increased the hydrogen generation rate only 1.5-fold, and thus extracellular hydrogenase enzymes appear to be insufficient to explain the enhanced corrosion rate. Electrochemical measurements suggested that strain 4t3-1-2LB did not excrete dissolved redox mediators. Exchanging the medium and scanning electron microscopy (SEM) imaging indicated that cells were attached to Fe(0). It is possible that strain 4t3-1-2LB used a direct mechanism to withdraw electrons from Fe(0) or favored chemical hydrogen formation on Fe(0) through maintaining low hydrogen concentrations. In coculture with an Acetobacterium strain, strain 4t3-1-2LB did not enhance acetogenesis from Fe(0). This work describes a strong corrosion enhancement by a Shewanella strain through its use of Fe(0) as an electron donor and provides insights into its corrosion-enhancing mechanism.IMPORTANCEShewanella spp. are frequently found on corroded metal structures. Their role in microbial influenced corrosion has been attributed mainly to their Fe(III)-reducing properties and, therefore, has been studied with the addition of an electron donor (lactate). Shewanella spp., however, can also use solid electron donors, such as cathodes and potentially Fe(0). In this work, we show that the electron acceptor fumarate supported the use of Fe(0) as the electron donor by Shewanella strain 4t3-1-2LB, which caused a (7.0 ± 0.6)-fold increase of the corrosion rate. The corrosion-enhancing mechanism likely involved cell surface-associated components in direct contact with the Fe(0) surface or maintenance of low hydrogen levels by attached cells, thereby favoring chemical hydrogen formation by Fe(0). This work sheds new light on the role of Shewanella spp. in biocorrosion, while the insights into the corrosion-enhancing mechanism contribute to the understanding of extracellular electron uptake processes.


Assuntos
Elétrons , Fumaratos/metabolismo , Ferro/metabolismo , Shewanella/metabolismo , Anaerobiose , Corrosão , Hidrogênio/análise , Hidrogênio/metabolismo , Oxirredução
13.
Bioelectrochemistry ; 122: 213-220, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29694942

RESUMO

Bioelectrochemical systems couple electricity demand/supply to the metabolic redox reactions of microorganisms. Generally, electrodes act not only as electron acceptors/donors, but also as physical support for an electroactive biofilm. The microorganism-electrode interface can be modified by changing the chemical and/or topographical features of the electrode surface. Thus far, studies have reported conflicting results on the impact of the electrode surface roughness on the growth and current production of biofilms. Here, the surface roughness of the glassy carbon electrodes was successfully modified at the sub-microscale using micro electrodischarge machining, while preserving the surface chemistry of the parent glassy carbon. All microbial electrodes showed similar startup time, maximum current density, charge transport ability across the biofilm and biomass production. Interestingly, an increase in the average surface cavity depth was observed for the biofilm top layer as a function of the electrode surface roughness (from 7 µm to 16 µm for a surface roughness of 5 nm to 682 nm, respectively). These results indicated that the surface roughness at a sub-microscale does not significantly impact the attachment or current production of mixed culture anodic biofilms on glassy carbon. Likely earlier observations were associated with changes in surface chemistry, rather than surface topography.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Biofilmes/crescimento & desenvolvimento , Geobacter/fisiologia , Eletricidade , Eletrodos , Desenho de Equipamento , Propriedades de Superfície
14.
Bioresour Technol ; 246: 271-281, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28709884

RESUMO

Biochar is chemically more reduced and reactive than the original feedstock biomass. Graphite regions, functional groups, and redox-active metals in biochar contribute to its redox characteristics. While the functional groups such as phenolic species in biochar are the main electron donating moieties (i.e., reducers), the quinones and polycondensed aromatic functional groups are the components accepting electrons (oxidants). The redox capacity of biochar depends on feedstock properties and pyrolysis conditions. This paper aims to review and summarize the various synthesis techniques for biochars and the methods for probing their redox characteristics. We review the abiotic and microbial applications of biochars as electron donors, electron acceptors, or electron shuttles for pollutant degradation, metal(loid)s (im)mobilization, nutrient transformation, and discuss the underlying mechanisms. Furthermore, knowledge gaps that exist in the exploration and differentiation of the electron transfer mechanisms involving biochars are also identified.


Assuntos
Carvão Vegetal , Biomassa , Grafite , Oxirredução
15.
ACS Sens ; 2(8): 1072-1085, 2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28745865

RESUMO

Microbial electrochemistry has from the onset been recognized for its sensing potential due to the microbial ability to enhance signals through metabolic cascades, its relative selectivity toward substrates, and the higher stability conferred by the microbial ability to self-replicate. The greatest challenge has been to achieve stable and efficient transduction between a microorganism and an electrode surface. Over the past decades, a new kind of microbial architecture has been observed to spontaneously develop on polarized electrodes: the electroactive biofilm (EAB). The EAB conducts electrons over long distances and performs quasi-reversible electron transfer on conventional electrode surfaces. It also possesses self-regenerative properties. In only a few years, EABs have inspired considerable research interest for use as biosensors for environmental or bioprocess monitoring. Multiple challenges still need to be overcome before implementation at larger scale of this new kind of biosensors can be realized. This perspective first introduces the specific characteristics of the EAB with respect to other electrochemical biosensors. It summarizes the sensing applications currently proposed for EABs, stresses their limitations, and suggests strategies toward potential solutions. Conceptual prospects to engineer EABs for sensing purposes are also discussed.

16.
Water Res ; 118: 114-120, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28419895

RESUMO

The addition of iron salts is one of the most commonly used dosing strategies for sulfide control in sewers. However, iron salts decrease the sewage pH which not only reduces the effectiveness of sulfide precipitation but also enhances the release of residual sulfide to the sewer atmosphere. Equally important, concentrated iron salt solutions are corrosive and their frequent transport, handling, and on-site storage often come with Occupational Health and Safety (OH&S) concerns. Here, we experimentally demonstrated a novel sulfide control approach using electrochemical systems with parallel placed iron electrodes. This enabled combining anodic dissolved iron species release with cathodic hydroxyl anion production, which alleviates all the aforementioned concerns. A long-term experiment was successfully carried out achieving an average sulfide removal efficiency of 95.4 ± 4.4% at low voltage input of 2.90 ± 0.54 V over the course of 8 weeks. This electrochemical method was demonstrated to successfully achieve efficient sulfide control. In addition, it increases the sewage pH, thereby overcoming the drawbacks associated with the pH decrease in the case of conventional iron salt dosing. Ferrous ions were produced at an overall coulombic efficiency (CE) of 98.2 ± 1.2%, whereas oxygen evolution and direct sulfide oxidation were not observed. Short-term experiments showed that increasing either inter-electrode gap or current density increased the cell voltage associated with the increase in the ohmic drop of the system. Overall, this study highlights the practical potential of in-situ generation of dissolved iron species and simultaneous hydroxyl anion generation for efficient sulfide control in sewers.


Assuntos
Esgotos , Sulfetos , Técnicas Eletroquímicas , Sulfeto de Hidrogênio , Ferro , Oxirredução
17.
Sci Rep ; 6: 32870, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27628746

RESUMO

Biochars have gathered considerable interest for agronomic and engineering applications. In addition to their high sorption ability, biochars have been shown to accept or donate considerable amounts of electrons to/from their environment via abiotic or microbial processes. Here, we measured the electron accepting (EAC) and electron donating (EDC) capacities of wood-based biochars pyrolyzed at three different highest treatment temperatures (HTTs: 400, 500, 600 °C) via hydrodynamic electrochemical techniques using a rotating disc electrode. EACs and EDCs varied with HTT in accordance with a previous report with a maximal EAC at 500 °C (0.4 mmol(e(-)).gchar(-1)) and a large decrease of EDC with HTT. However, while we monitored similar EAC values than in the preceding study, we show that the EDCs have been underestimated by at least 1 order of magnitude, up to 7 mmol(e(-)).gchar(-1) for a HTT of 400 °C. We attribute this existing underestimation to unnoticed slow kinetics of electron transfer from biochars to the dissolved redox mediators used in the monitoring. The EDC of other soil organic constituents such as humic substances may also have been underestimated. These results imply that the redox properties of biochars may have a much bigger impact on soil biogeochemical processes than previously conjectured.


Assuntos
Carvão Vegetal/química , Elétrons , Substâncias Húmicas/análise , Adsorção , Técnicas Eletroquímicas , Eletrodos , Transporte de Elétrons , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Oxirredução , Porosidade , Solo , Temperatura , Madeira
18.
Water Res ; 92: 38-43, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26827256

RESUMO

Spent caustic streams (SCS) are produced during alkaline scrubbing of sulfide containing sour gases. Conventional methods mainly involve considerable chemical dosing or energy expenditures entailing high cost but limited benefits. Here we propose an electrochemical treatment approach involving anodic sulfide oxidation preferentially to sulfur coupled to cathodic caustic recovery using a two-compartment electrochemical system. Batch experiments showed sulfide removal efficiencies of 84 ± 4% with concomitant 57 ± 4% efficient caustic production in the catholyte at a final concentration of 6.4 ± 0.1 wt% NaOH (1.6 M) at an applied current density of 100 A m(-2). Subsequent long-term continuous experiments showed that stable cell voltages (i.e. 2.7 ± 0.1 V) as well as constant sulfide removal efficiencies of 67 ± 5% at a loading rate of 47 g(S) L(-1) h(-1) were achieved over a period of 77 days. Caustic was produced at industrially relevant strengths for scrubbing (i.e. 5.1 ± 0.9 wt% NaOH) at current efficiencies of 96 ± 2%. Current density between 0 and 200 A m(-2) and sulfide loading rates of 50-200 g(S) L(-1) d(-1) were tested. The higher the current density the more oxidized the sulfur species produced and the higher the sulfide oxidation. On the contrary, high loading rate resulted in a reduction of sulfide oxidation efficiency. The results obtained in this study together with engineering calculations show that the proposed process could represent a cost-effective approach for sodium and sulfur recovery from SCS.


Assuntos
Cáusticos/isolamento & purificação , Eletroquímica/métodos , Rios/química , Sulfetos/isolamento & purificação , Eletricidade , Eletroquímica/instrumentação , Eletrodos , Concentração de Íons de Hidrogênio , Oxirredução , Eliminação de Resíduos Líquidos , Purificação da Água/métodos
19.
Sci Rep ; 5: 11484, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26127013

RESUMO

Monitoring in vitro the metabolic activity of microorganisms aids bioprocesses and enables better understanding of microbial metabolism. Redox mediators can be used for this purpose via different electrochemical techniques that are either complex or only provide non-continuous data. Hydrodynamic chronoamperometry using a rotating disc electrode (RDE) can alleviate these issues but was seldom used and is poorly characterized. The kinetics of Faecalibacterium prausnitzii A2-165, a beneficial gut microbe, were determined using a RDE with riboflavin as redox probe. This butyrate producer anaerobically ferments glucose and reduces riboflavin whose continuous monitoring on a RDE provided highly accurate kinetic measurements of its metabolism, even at low cell densities. The metabolic reaction rate increased linearly over a broad range of cell concentrations (9 × 10(4) to 5 × 10(7) cells.mL(-1)). Apparent Michaelis-Menten kinetics was observed with respect to riboflavin (KM = 6 µM; kcat = 5.3 × 10(5) s(-1), at 37 °C) and glucose (KM = 6 µM; kcat = 2.4 × 10(5) s(-1)). The short temporal resolution allows continuous monitoring of fast cellular events such as kinetics inhibition with butyrate. Furthermore, we detected for the first time riboflavin reduction by another potential probiotic, Butyricicoccus pullicaecorum. The ability of the RDE for fast, accurate, simple and continuous measurements makes it an ad hoc tool for assessing bioprocesses at high resolution.


Assuntos
Eletroquímica/métodos , Bactérias Gram-Positivas/metabolismo , Hidrodinâmica , Anaerobiose , Contagem de Colônia Microbiana , Eletrodos , Glucose/metabolismo , Cinética , Reprodutibilidade dos Testes , Riboflavina/metabolismo , Fatores de Tempo
20.
Bioresour Technol ; 195: 46-50, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26112346

RESUMO

This work reports a simple and scalable method to convert stainless steel (SS) felt into an effective anode for bioelectrochemical systems (BESs) by means of heat treatment. X-ray photoelectron spectroscopy and cyclic voltammetry elucidated that the heat treatment generated an iron oxide rich layer on the SS felt surface. The iron oxide layer dramatically enhanced the electroactive biofilm formation on SS felt surface in BESs. Consequently, the sustained current densities achieved on the treated electrodes (1 cm(2)) were around 1.5±0.13 mA/cm(2), which was seven times higher than the untreated electrodes (0.22±0.04 mA/cm(2)). To test the scalability of this material, the heat-treated SS felt was scaled up to 150 cm(2) and similar current density (1.5 mA/cm(2)) was achieved on the larger electrode. The low cost, straightforwardness of the treatment, high conductivity and high bioelectrocatalytic performance make heat-treated SS felt a scalable anodic material for BESs.


Assuntos
Fontes de Energia Bioelétrica , Eletroquímica/métodos , Temperatura Alta , Aço Inoxidável/química , Biofilmes , Catálise , Eletricidade , Eletrodos , Espectroscopia Fotoeletrônica , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA