Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
2.
Clin Res Cardiol ; 108(8): 909-920, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30701297

RESUMO

BACKGROUND: Alterations in native myocardial T1 under vasodilation stress ("T1 reactivity") were recently proposed as a non-contrast cardiovascular magnetic resonance (CMR) method to detect myocardial ischemia. This study evaluated the performance of a segmental, truly non-contrast stress T1 mapping CMR approach to detect inducible ischemia. METHODS AND RESULTS: One-hundred patients with suspected/known coronary artery disease underwent CMR at 3.0 or 1.5 T. T1 mapping was performed using the 5s(3s)3s-modified look-locker inversion-recovery (MOLLI) sequence at rest and under regadenoson stress. We defined T1 reactivity as the change in native T1 from rest to stress (1) in the 16-segment AHA model independent from perfusion images and (2) in focal regions of interest that were copied from perfusion images to T1 maps. We compared T1 reactivity between segments/regions with inducible ischemia, scar, and remote myocardium for both approaches. Segmental T1 reactivity was significantly lower in segments including inducible ischemia [- 1.15 (95% CI, - 2.16 to - 0.14)%] compared to remote segments [2.49 (95% CI, 1.87 to 3.11)%; p < 0.001]. Focal T1 reactivity was also significantly lower [- 2.65 (95% CI, - 3.84 to - 1.46)%] in regions with stress-perfusion defects compared to remote regions [4.72 (95% CI, 3.90 to 5.54)%; p < 0.001]. However, the performance of segmental T1 reactivity to depict inducible ischemia was significantly inferior compared to the focal approach (AUCs 0.68 versus 0.85; p < 0.0001). CONCLUSIONS: Myocardium with inducible ischemia is characterized by the absence of significant T1 reactivity, but a clinically applicable approach for truly non-contrast stress T1 mapping remains to be determined.


Assuntos
Imagem Cinética por Ressonância Magnética/métodos , Isquemia Miocárdica/diagnóstico , Miocárdio/patologia , Idoso , Teste de Esforço , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Isquemia Miocárdica/fisiopatologia , Valor Preditivo dos Testes
3.
Am J Physiol Renal Physiol ; 315(6): F1526-F1535, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30207169

RESUMO

The role of CX3CR1, also known as fractalkine receptor, in hypertension is unknown. The present study determined the role of the fractalkine receptor CX3CR1 in hypertensive renal and cardiac injury. Expression of CX3CR1 was determined using CX3CR1GFP/+ mice that express a green fluorescent protein (GFP) reporter in CX3CR1+ cells. FACS analysis of leukocytes isolated from the kidney showed that 34% of CD45+ cells expressed CX3CR1. Dendritic cells were the majority of positive cells (67%) followed by macrophages (10%), NK cells (6%), and T cells (10%). With the use of confocal microscopy, the receptor was detected in the kidney only on infiltrating cells but not on resident renal cells. To evaluate the role of CX3CR1 in hypertensive end-organ injury, an aggravated model of hypertension was used. Unilateral nephrectomy was performed followed by infusion of angiotensin II (ANG II, 1.5 ng·g-1·min-1) and a high-salt diet in wild-type ( n = 15) and CX3CR1-deficient mice ( n = 18). CX3CR1 deficiency reduced the number of renal dendritic cells and increased the numbers of renal CD11b/F4/80+ macrophages and CD11b/Ly6G+ neutrophils in ANG II-infused mice. Surprisingly, CX3CR1-deficient mice exhibited increased albuminuria, glomerular injury, and reduced podocyte density in spite of similar levels of arterial hypertension. In contrast, cardiac damage as assessed by increased heart weight, cardiac fibrosis, and expression of fetal genes, and matrix components were not different between both genotypes. Our findings suggest that CX3CR1 exerts protective properties by modulating the invasion of inflammatory cells in hypertensive renal injury. CX3CR1 inhibition should be avoided in hypertension because it may promote hypertensive renal injury.


Assuntos
Angiotensina II , Pressão Arterial , Receptor 1 de Quimiocina CX3C/metabolismo , Células Dendríticas/metabolismo , Hipertensão/metabolismo , Nefropatias/prevenção & controle , Rim/metabolismo , Leucócitos/metabolismo , Macrófagos/metabolismo , Albuminúria/metabolismo , Albuminúria/fisiopatologia , Albuminúria/prevenção & controle , Animais , Receptor 1 de Quimiocina CX3C/deficiência , Receptor 1 de Quimiocina CX3C/genética , Quimiotaxia de Leucócito , Modelos Animais de Doenças , Hipertensão/induzido quimicamente , Hipertensão/genética , Hipertensão/fisiopatologia , Rim/patologia , Rim/fisiopatologia , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologia , Células Matadoras Naturais/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Neutrófilos/patologia , Transdução de Sinais , Linfócitos T/metabolismo , Linfócitos T/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA